Tumgik
#Azimuth 106
thorsenmark · 3 months
Video
Finding My Home in the Peaks and Forest s in Pinnacles National Park
flickr
Finding My Home in the Peaks and Forest s in Pinnacles National Park by Mark Stevens Via Flickr: While walking the Juniper Canyon Loop with a view looking east to other pinnacle formations along the High Peaks in this part of Pinnacles National Park. What I wanted to capture with this image was a slightly wide angle, vista-like view of the High Peaks but also include some nearby foreground to add to the setting. I decided not to go completely wide angle as the sun was shining more or less in the direction I was looking. I was able though to use the ClearView Plus and some tools in DxO PhotoLab 6 to bring out more of the colors and textures present.
3 notes · View notes
suite43 · 3 years
Note
PS Neither the egg fic nor the vegan freak have anything to do with M/gastar before you try it. That's all pure Starscream stanning, baby. And one of them is St/rop, the supposedly ""good""" ship LOL.
List of female Transformers Main Complete list Following is a thorough list of the various female Transformers in canon thus far. Many of these characters were Japan-exclusive, featured only in fiction, or exist as limited-run exclusive toys. Female characters who had multiple toys are listed only once. Generation 1 (Numbers indicate order of appearance.) Chromia (1) Moonracer (2) Firestar (3) Elita One (4) Greenlight (5) Lancer (6) Arcee (7) Beta (8) An Autobot rebel (9) Paradron Medic (11) Nancy (12) Minerva (13) Clipper (14) Karmen (18) Glyph (20) Road Rage (21) Discharge[1] (22) Windy[1] (23) Vibes (24) Roulette (25) Flareup (32) Flip Sides (34) Rosanna (35) Windrazor (38) Thunderblast (46) Cassiopeia (47) Nautica (51) Windblade (52) Victorion (61) Velocity (63) Javelin (62) Proxima (64) Roadmaster (65) Acceleron (66) Override (69) Rust Dust (70) Pyra Magna (71) Skyburst (72) Stormclash (73) Jumpstream (74) Dust Up (75) Scorpia[1] (76) Eos (80) Lifeline (83) Quickslinger (84) Hotwire[2] (98) Strongarm (99) Slide[2] (104) Crush Bull[2] (107) Oiler[2] (108) Broadside[2] (109) Sky High[2] (110) Circuit[2] (116) Pyra Ignatia Spark[2] (118) Scorchfire (122) Orthia (126) Smashdown[2] (128) Esmeral (15) Lyzack (16) Clio (17) Nightracer (19) Shadow Striker (26) Howlback (31) Flamewar (33) Flip Sides (34) Crasher (39) Freezon[1] (44) Nightracer (49) Slipstream (50) Twirl (54) Nickel (60) Swift (77) Killjoy (79) Blackout[2] (81) Spaceshot[2] (82) Crash Test (85) Trickdiamond (92) Moonheart (93) Megaempress (94) Flowspade (95) Lunaclub (96) Megatronia (100) Buckethead[1] (103) Diveplane[1] (112) Seawave[1] (113) Mindgame (114) Tracer[2] (115) Devastator[2] (117) Cindersaur[2] (125) Shadow Striker (127) Nova Storm[2] (129) Termagax (133) Kaskade (135) Heavywait (138) Tyrannocon Rex (139) Cheesecake robot (10) Roulette and Shadow Striker's sister (27) Path Finder (28) Small Foot (29) Devcon's galpal (30) One of Optimus Prime's rescuees (36) Angela (37) Four members of the Kaon upperclass (40-43) Ma-Grrr (45) Red waitress Transformer (48) Windshear (53) Solus Prime (55) Female protester (56) Lightbright (57) Strafe (58) Mistress of Flame (59) Exocet (67) Vertex (68) Aileron (78) Gnash (86) Slice (87) Thrashclaw (88) Shred (89) A pair of Devisen twins (90-91) Maxima (97) Sieg[3] (101) Kari (102) Anode (105) Lug (106) X-Throttle (111) Rum-Maj (119) Praesidia Magna (120) Fastbreak (121) Crash Test (122) Stardrive (123) Magrada (124) Leviathan (130) Codexa (131) Gauge (132) Lodestar (134) Shutter (136) Sharpclaw (137) Cargohold (140) Half-qualifiers: Alana, turned into a Transformer for a short time. Aunty, female Cybertronian intelligent computer. Combination granny and attack-dog-bots, human-sized drones supposedly based on Transformer technology. One of Maccadam's bartenders Nightbird Overlord, has a female side to him. Some of the "Teletraan" computers like 15 and 10 are female. There appears to be a female design among a group of old generics. Bayonet, the fake female Decepticon disguise of Britt. In the French dub of The Transformers: The Movie, Shrapnel and Starscream are considered female. Shrapnel is also female in the Russian dub. Beast Era (Numbers indicate order of appearance.) Airazor (2) Kitte Shūshū (5) Rage (6) Botanica (7) Sonar[1] (13) Crystal Widow (14) Crossblades (15) Stiletto (16) Transmutate[1] (18) Binary (19) Wedge Shape[1] (24) Aura (25) Legend Convoy[1] (26) Stockade[2] (28) Rav (29) Hammerstrike[2] (31) Triceradon[2] (35) Skimmer (36) Nyx (44) Blackarachnia (1) Scylla (3) Antagony (4) Strika (8) Manta Ray[1] (17) Ser-Ket (20) Dead-End[2] (27) Jai-Alai (30) Max-B[2] (32) Gaidora (33) Soundbyte/Soundbite (34) Liftoff (37) Freefall (38) Snarl-blast[2] (39) Vertebreak (43) Skold (45) Libras (9) Virgol (10) Cancix[1] (11) Possibly Sagittarii (12) Dipole (21) Vamp (22) Plasma[2] (23) Deep Blue (40) At least two bridge officers of the Terrastar (41-42) Half-qualifiers: NAVI-ko, female Cybertronian intelligent computer NAVI (Yukikaze), female Cybertronian intelligent computer NAVI (Gung Ho), female Cybertronian
intelligent computer DNAVI, female Cybertronian intelligent computer Medusa, an Intruder-built robot modified with Cybertronian technology Robots in Disguise (2001) (Numbers indicate order of appearance.) Optimus Prime[2] (1) Nightcruz[1] (3) Scourge[2] (2) Half-qualifiers: T-AI, female Cybertronian intelligent computer. Unicron Trilogy (Numbers indicate order of appearance.) Airazor (5) Arcee (9) Autobot nurses (10) Two Velocitronian band members (11-12) Override[4] (13) Joyride[4] (15) Quickslinger (16) Crystal Widow (24) Treadbolt (33) Chromia (34) Thunderblast (14) Spacewarp (30) Sureshock (1) Combusta (2) Falcia (3) Twirl (4) Sunburn (6) Cliffjumper[1] (7) Ironhide[1] (8) Spiral[1] (9) Offshoot[1] (17) Breakage[1] (18) Kickflip[1] (19) Mudbath[1] (20) Heavy Metal[1] (21) "Disco ball" (22) Road Rebel[1] (23) Guardian Speed[1] (25) Mugen[1] (26) Bingo/Triac[1] (27) Wedge Shape[1] (28) Sprite (29) Boom Tube (31) Windrazor (32) Rán (33) Half-qualifiers: A possible scooterformer Dark Nitro Convoy, evil clone of a character whose gender was switched in translation Red Alert, minimally-altered release of a toy that was female in Japan Midnight Express, unaltered release of a toy that was female in Japan Hourglass, a female character who might be a Cybertronian Bombshell, a female character who might be a Cybertronian Carillon, a female character who might be a Cybertronian Vector Prime, the former multiversal entity who was female in some universes Movie continuity family (Numbers indicate order of appearance.) Arcee (1) Elita-One (2) Chromia (4) Perihelion (8) HMS Alliance (9) Windblade (13) Fracture (3) Alice (5) Shadow Striker (6) Override[3] (7) Diabla (10) Howlback (11) Shatter (12) Nightbird Airazor Half-qualifiersJetfire claims to have a mother who may or may not have been a Transformer. Animated (Numbers indicate order of appearance.) Sari Sumdac (2) Arcee (3) Elita-1 (4) Red Alert (6) Botanica (8) Flareup (10) Rosanna (11) Glyph (12) Lickety-Split (13) Lightbright (14) Chromia (16) Clipper (17) Quickslinger (18) Kappa Supreme (19) Override Prime (20) Windy (21) Road Rage (25) Flashpoint (26) Minerva (27) Sureshock (28) Nightbeat (29) Sunstreaker (30) Blackarachnia (1) Slipstream (5) Strika (7) Flip Sides (9) Antagony (15) Wingthing (22) Beta (23) Drag Strip (24) Half-qualifiers: Teletran-1, female Cybertronian intelligent computer TransTech (Numbers indicate order of appearance.) Blackarachnia (5) Strika (3) Unnamed medic (1) Andromeda (2) Cyclis (4) Sonar (6) Hammerstrike (7) Scorpia (8) Proxima (9) Half-qualifiers: Axiom Nexus News Editor, a 'bot with one male and one female personality Shattered Glass (Numbers indicate order of appearance.) Crasher (1) Esmeral (6) Howlback (7) Arcee (2) Andromeda (3) Elita-One (4) Strongarm (8) Windblade (9) Nautica (10) Beta (5) Half-qualifiers: Teletraan-X, female Cybertronian intelligent computer. Aligned continuity family (Numbers indicate order of appearance.) Akiba Prime Arc Arcee Arcee Blade Assault Star Brushfire Cameo Catapult Chevalier Chromia Deep Blue Ether Walker Firestar Galaxy Flare Galaxy 'Questrian Glow Matronly Docent Quickshadow Rocket Plume Solus Prime Strongarm Tempest Spin Thunderclap Upkeep Windblade Airachnid Astraea Aurora Speeder Balewing Coldstar Crimson Phantom Cyberwarp Cyclone Dancer Diabla Duststorm Fallen Angel Filch Flamewar Flash Runner Glowstrike Hoverbolt Helter-Skelter Hurricane Hunter Ida Lensflare Metal Thunder Nebula Ripper Night Dancer Overhead Retrofit Rollcage Scatterspike Skyjack Slink Slipstream Spiral Zealot Supernova Flame Variable Star Void Pulse Zizza Ser-Ket Ripclaw Azimuth Cogwheel Elita One Mercury Moonracer Nightra Override Bot Shots (Numbers indicate order of appearance.) Buzzclaw (1) Kre-O (Numbers indicate order of appearance.) Chromia (1) Arcee (3) Strika (4) Minerva (5) Windblade (6) Paradron Medic (10) Strongarm (12) Skimmer[1] (13) Airachnid (2) Thunderblast (7) Blackarachnia (8) Slipstrike (9) Ida (11) Liftoff[1] (14) Freefall[1] (15) Angry Birds Transformers (Numbers indicate order of appearance.) Stella as:Arcee
(1) Airachnid (2) Chromia (4) Novastar (10) Moonracer (11) Greenlight (12) Silver as:Windblade (3) Energon Windblade (5) Elita-One (8) Matilda as:Energon Nautica (6) Nautica (7) Strongarm (9) Zeta as:Nightbird (13) Rosanna (15) Zeta as:Slipstream (14) Cyberverse (Numbers indicate order of appearance.) Arcee Chromia Clobber Jazz[3] Windblade Alpha Strike Nova Storm Shadow Striker Skywarp Slipstream Blackarachnia Cosmos Operatus Solus Prime Half-qualifiers: In the Japanese dub of Cyberverse, Thrust was female, and went by the name Red Wing. Acid Storm fluctuates between the male and female Seeker body types in show. Mae Catt would explain this on Twitter as this being "just something Acid Storm likes to do" and that pronouns are "up to Acid Storm". This would imply Acid Storm is non-binary gender fluid, thus they semi-qualify for the list. BotBots (Numbers indicate order of appearance.) Aday Angry Cheese Arctic Guzzlerush Bankshot Big Cantuna Bok Bok Bok-O Bonz-Eye Bot-T-Builder Bottocorrect Bratworst Brock Head Chef Nada Clawsome Crabby Grabby Cuddletooth Dingledeedoo Disaster Master Disgusto Desserto DJ Fudgey Fresh Doctor Flicker Drama Sauce Drillit Yaself Face Ace Fail Polish Fit Ness Monster Flare Devil Flood Jug Fomo Frohawk Frostfetti Frostyface Glam Glare Fancy Flare Glitch Face Goggly Spy P.I. Gold Dexter Goldface Goldiebites Goldie Terrortwirl Goldito Favrito Goldpin Baller Gold Punch Grampiano Grandma Crinkles Grave Rave The Great Mumbo Bumblo Greeny Rex Grrr'illa Grimes Halloween Knight Handy Dandy Hashtagz Hawt Diggity Hawt Mess Highroller Hiptoast Ice Sight Javasaurus Rex Jet Setter Knotzel Latte Spice Whirl Leafmeat Alone Loadoutsky Lolly Licks Lolly Mints Miss Mixed Movie Munchster Ms. Take Must Turd Nanny McBag Nomaste Nope Soap Ol' Tic Toc Ollie Bite Outta Order Overpack Pop N. Lock Pop O' Gold Pressure Punk Professor Scope Rebugnant Roarista Sandy Shades Scribby Sheriff Sugarfeet Shifty Gifty Sippyberry Sippy Slurps Skippy Dippy Disc Slappyhappy Smooth Shaker Smore N' More Sour Wing Starscope Sticky McGee Sugar Saddle Super Bubs Sweet Cheat Technotic Sonic Terror Tale Torch Tidy Trunksky Tricitrustops Tropic Guzzlerush Tutu Puffz Twerple Burple Unilla Icequeencone Venus Frogtrap Vigitente Waddlepop Wasabi Breath Whirlderful Whoopsie Cushion Wristocrat
33 notes · View notes
Photo
Tumblr media
Starreader the NightWing hated the casual cruelty and arrogance of her people, and fled the island as soon as she was able. She journeyed for a time, looking for a home, until she settled in a beautiful and seemingly uninhabited mountain range. She intended to live out her days as a hermit of sorts; hunting fresh meat when she was hungry, drinking from rivers chilled with snow runoff, and reading the stories told by the ancient stars. However, every night the mountains rang with the clangorous racket of a hammer on mental, denying her any peace. Furious, she sought out the noise, and discovered a single Skywing male - Hammerfall, the blacksmith. He apologised for the noise, saying he thought he was alone. These mountains, he explained, contained old, stubborn iron that forged into weapons, armour, and trinkets that warded against magic. He toured her around his cave-home, full of gold and treasure sold for his craft. The two reached an understanding, and over time, a friendship, and then love. Thus, Azimuth was born. Starreader carefully bathed his egg in moonlight every night, kept in a nest of old coals from his father's forge to keep warm. He hatched under a full moon, and has mild prophetic powers. These manifest in knowing the true nature of things he touches; for example, if given a jewel he knows if it is a diamond or cleverly-cut glass, just by touch. This knowing is not intrusive as other NightWing powers can be; he simply knows the information the same as any other. I'm feeling warm. The sky is blue. Slate is smooth. This tree is 106 years old. (His powers extend to creatures including dragons, but not to their thoughts or feelings. He could touch a dragon and know them to be a Seawing, know their age or gender, but he could not know what they're thinking. He also cannot see the future or past.) Azimuth helps his father with his smithing, as he can easily tell the purity of metals and the authenticity of jewels. Often he journeys away from their mountain home to bring back goods for his parents.
2 notes · View notes
burlveneer-music · 4 years
Audio
Becker & Mukai - Time Very Near - a genre stew from two multi-instrumentalists (SaS Recordings)
Parisian cinema composer Jean-Gabriel Becker is best known for idiosyncratic soundscapes, whilst Susumu Mukai is a world-renowned Japanese composer and multi- instrumentalist. Together they’ve created fresh new music that floats effortlessly above traditional genre delineation, with a dubbed-out and experimental melange of modern acid house, post punk, global grooves and clattering beats. Still not complying to genres, ‘Time Very Near’ is their tentacular new album, which gathers sounds and inspiration from an ever-expanding palette of influences, assembled into something amorphously intangible that’s simultaneously refreshing and sharp, meandering and cosmic, futuristic but timelessly vintage. All tracks written and produced by Jean-Gabriel Becker and Susumu Mukai. Jean-Gabriel Becker: synthesisers and machines, guitar, percussion. Susumu Mukai: synthesisers and machines, bass, percussion, drums. Kenichi Iwasa: trumpet on ‘Tout Azimuth’ and ‘The Double’ Olly Betts: drums on ‘Time Very Near’ Illustration by Susumu Mukai, sleeve design by Becker & Mukai Gear used: Boss Dr Rhythm DR-110, Roland TR707, Roland TR808, Korg KPR77, Kawai R100, Roland TR606, Roland Juno 60, Roland Juno 106, ARP Odyssey, Casio CZ3000, Ensoniq ESQ1, Yamaha CS-5, Crumar Bit-One, Eventide Harmonizer, Yamaha DX7, Mutron Biphase, Yamaha REX50 multi-effects, Fender Stratocaster Japan 1987, Epiphone Newport Bass 1965, Hofner bass 1961, Fender Telecaster 1975, Fender Jazz Bass 2010 and more.
4 notes · View notes
cristianthai-blog · 4 years
Text
Azimuth 139°SE,
Vĩ độ 010°44'44"N,
Kinh độ 106°39'39"E,
77-79 5 8, QL50, Phường 6, Quận 8, Hồ Chí Minh, Việt Nam
http://maps.google.com/maps?f=q&q=(10.738873048914309,106.65609220628704)
L
1 note · View note
yhwhrulz · 3 years
Text
0 notes
svyat · 5 years
Photo
Tumblr media
- Женская куртка весна-осень Azimuth В 8323_106 - Цена и размеры: www.azimuthsport.ru/view_goods/zhenskaya-kurtka-parka-azimuth-b-8323-106-sinij-pid-209174-209175 ______________________________________________________ • Официальный поставщик #Azimuth в нашу страну🇷🇺 • Сертифицированные товары. • Доставка по Москве и МО. • Отправка заказов по СНГ. • Гарантия на товары 30 дней(с момента получения заказа). ______________________________________________________ #azimuthsport #синяяпарка #паркасиняя #синийцвет #весенняяодежда #весенняяодеждамосква #покупкивмоскве (at Kapotnya District) https://www.instagram.com/ski_suits_shop/p/BtxRZKJhA0C/?utm_source=ig_tumblr_share&igshid=1d1vxwqiopu7x
0 notes
courtneytincher · 5 years
Text
U.S. Marines expects full operational capability for ATWS by end of 2019
The U.S. Marine Corps has reported that full operational capability for the upgraded Anti-Tank Weapon Systems (ATWS) is expected at the end of the fiscal year 2019.
According to a statement, the U.S. Marine Corps continues to upgrade the turret system for one of its longest-serving fighting vehicles – the Light Armored Vehicle-Anti-Tank or also called LAV-AT.
In September 2017, Marine Corps Systems Command’s LAV-AT Modernization Program Team achieved initial operational capability by completing the fielding of its first four Anti-Tank Light Armored Vehicles with the upgraded Anti-Tank Weapon Systems to Light Armored Reconnaissance Battalion Marines. 
The ATWS fires the tube-launched, optically-tracked, wire-guided—or TOW—missiles. It provides long-range stand-off anti-armor fire support to maneuvering Light Armored Reconnaissance companies and platoons. The ATWS also provides an observational capability in all climates, as well as other environments of limited visibility, thanks to an improved thermal sight system that is similar to the Light Armored Vehicle 25mm variant fielded in 2007.
“Marines using the new ATWS are immediately noticing the changes, including a new far target location capability, a commander/gunner video sight display, a relocated gunner’s station, and an electric elevation and azimuth drive system, which replaced the previous noisy hydraulic system,” said Steve Myers, LAV program manager.
The ATWS also possesses a built-in test capability, allowing the operators and maintainers to conduct an automated basic systems check of the ATWS, he said. 
The LAV-ATM Team continues to provide new equipment training to units receiving the ATWS upgrade, with the final two training evolutions scheduled for early this year. Training consists of a 10-day evolution with three days devoted to the operator and seven days devoted to maintaining the weapon system. Follow-on training can be conducted by the unit using the embedded training mode within the ATWS. 
“This vehicle equips anti-tank gunner Marines with a modern capability that helps them maintain readiness and lethality to complete their mission,” said Maj. Christopher Dell, LAV Operations officer.
“Currently, there are 58 in service within the active fleet,” said Myers. “The original equipment manufacturer delivered 91 of the 106 contracted kits and is ahead of schedule. Now MCSC’s focus is directed at the Marine Corps Forces Reserve, ensuring they receive the same quality NET and support as their active counterparts.”
from Defence Blog
The U.S. Marine Corps has reported that full operational capability for the upgraded Anti-Tank Weapon Systems (ATWS) is expected at the end of the fiscal year 2019.
According to a statement, the U.S. Marine Corps continues to upgrade the turret system for one of its longest-serving fighting vehicles – the Light Armored Vehicle-Anti-Tank or also called LAV-AT.
In September 2017, Marine Corps Systems Command’s LAV-AT Modernization Program Team achieved initial operational capability by completing the fielding of its first four Anti-Tank Light Armored Vehicles with the upgraded Anti-Tank Weapon Systems to Light Armored Reconnaissance Battalion Marines. 
The ATWS fires the tube-launched, optically-tracked, wire-guided—or TOW—missiles. It provides long-range stand-off anti-armor fire support to maneuvering Light Armored Reconnaissance companies and platoons. The ATWS also provides an observational capability in all climates, as well as other environments of limited visibility, thanks to an improved thermal sight system that is similar to the Light Armored Vehicle 25mm variant fielded in 2007.
“Marines using the new ATWS are immediately noticing the changes, including a new far target location capability, a commander/gunner video sight display, a relocated gunner’s station, and an electric elevation and azimuth drive system, which replaced the previous noisy hydraulic system,” said Steve Myers, LAV program manager.
The ATWS also possesses a built-in test capability, allowing the operators and maintainers to conduct an automated basic systems check of the ATWS, he said. 
The LAV-ATM Team continues to provide new equipment training to units receiving the ATWS upgrade, with the final two training evolutions scheduled for early this year. Training consists of a 10-day evolution with three days devoted to the operator and seven days devoted to maintaining the weapon system. Follow-on training can be conducted by the unit using the embedded training mode within the ATWS. 
“This vehicle equips anti-tank gunner Marines with a modern capability that helps them maintain readiness and lethality to complete their mission,” said Maj. Christopher Dell, LAV Operations officer.
“Currently, there are 58 in service within the active fleet,” said Myers. “The original equipment manufacturer delivered 91 of the 106 contracted kits and is ahead of schedule. Now MCSC’s focus is directed at the Marine Corps Forces Reserve, ensuring they receive the same quality NET and support as their active counterparts.”
via IFTTT
0 notes
Solution Manual for Elementary Surveying An Introduction to Geomatics 13th Edition by Ghilani Wolf
This is Full Solution Manual for Elementary Surveying: An Introduction to Geomatics, 13th Edition Charles D. Ghilani and Wolf
Click link bellow to view sample:
http://digitalcontentmarket.org/wp-content/uploads/2017/01/Solution-Manual-for-Elementary-Surveying-An-Introduction-to-Geomatics-13th-Edition-Charles-D-Ghilani.pdf
Origin Book information:
ISBN-10: 0132554348
ISBN-13: 978-0132554343  9780132554343
Full download link: Solution Manual for Elementary Surveying An Introduction to Geomatics 13th Edition by Ghilani Wolf
http://digitalcontentmarket.org/download/solution-manual-for-elementary-surveying-an-introduction-to-geomatics-13th-edition-charles-d-ghilani
You will be guided to the product download page immediately once you complete the payment.If you have any questions, or would like a receive a sample chapter before your purchase, please contact us via email :
Table of Contents
1 • INTRODUCTION 1 1.1 Definition of Surveying 1 1.2 Geomatics 3 1.3 History of Surveying 4 1.4 Geodetic and Plane Surveys 9 1.5 Importance of Surveying 10 1.6 Specialized Types of Surveys 11 1.7 Surveying Safety 13 1.8 Land and Geographic Information Systems 14 1.9 Federal Surveying and Mapping Agencies 15 1.10 The Surveying Profession 16 1.11 Professional Surveying Organizations 17 1.12 Surveying on the Internet 18 1.13 Future Challenges in Surveying 19 Problems 20 Bibliography 21
2 • UNITS, SIGNIFICANT FIGURES, AND FIELD NOTES 23 PART I UNITS AND SIGNIFICANT FIGURES 23 2.1 Introduction 23 2.2 Units of Measurement 23 2.3 International System of Units (SI) 25 2.4 Significant Figures 27 2.5 Rounding Off Numbers 29 PART II FIELD NOTES 30 2.6 Field Notes 30 2.7 General Requirements of Handwritten Field Notes 31 2.8 Types of Field Books 32 2.9 Kinds of Notes 33 2.10 Arrangements of Notes 33 2.11 Suggestions for Recording Notes 35 2.12 Introduction to Data Collectors 36 2.13 Transfer of Files from Data Collectors 39 2.14 Digital Data File Management 41 2.15 Advantages and Disadvantages of Data Collectors 42 Problems 43 Bibliography 44
3 • THEORY OF ERRORS IN OBSERVATIONS 45 3.1 Introduction 45 3.2 Direct and Indirect Observations 45 3.3 Errors in Measurements 46 3.4 Mistakes 46 3.5 Sources of Errors in Making Observations 47 3.6 Types of Errors 47 3.7 Precision and Accuracy 48 3.8 Eliminating Mistakes and Systematic Errors 49 3.9 Probability 49 3.10 Most Probable Value 50 3.11 Residuals 51 3.12 Occurrence of Random Errors 51 3.13 General Laws of Probability 55 3.14 Measures of Precision 55 3.15 Interpretation of Standard Deviation 58 3.16 The 50, 90, and 95 Percent Errors 58 3.17 Error Propagation 60 3.18 Applications 65 3.19 Conditional Adjustment of Observations 65 3.20 Weights of Observations 66 3.21 Least-Squares Adjustment 67 3.22 Using Software 68 Problems 69 Bibliography 71
4 • LEVELING–THEORY, METHODS, AND EQUIPMENT 73 PART I LEVELING–THEORY AND METHODS 73 4.1 Introduction 73 4.2 Definitions 73 4.3 North American Vertical Datum 75 4.4 Curvature and Refraction 76 4.5 Methods for Determining Differences in Elevation 78 PART II EQUIPMENT FOR DIFFERENTIAL LEVELING 85 4.6 Categories of Levels 85 4.7 Telescopes 86 4.8 Level Vials 87 4.9 Tilting Levels 89 4.10 Automatic Levels 90 4.11 Digital Levels 91 4.12 Tripods 93 4.13 Hand Level 93 4.14 Level Rods 94 4.15 Testing and Adjusting Levels 96 Problems 100 Bibliography 102
5 • LEVELING–FIELD PROCEDURES AND COMPUTATIONS 103 5.1 Introduction 103 5.2 Carrying and Setting Up a Level 103 5.3 Duties of a Rodperson 105 5.4 Differential Leveling 106 5.5 Precision 112 5.6 Adjustments of Simple Level Circuits 113 5.7 Reciprocal Leveling 114 5.8 Three-Wire Leveling 115 5.9 Profile Leveling 117 5.10 Grid, Cross-Section, or Borrow-Pit Leveling 121 5.11 Use of the Hand Level 122 5.12 Sources of Error in Leveling 122 5.13 Mistakes 124 5.14 Reducing Errors and Eliminating Mistakes 125 5.15 Using Software 125 Problems 127 Bibliography 129
6 • DISTANCE MEASUREMENT 131 PART I METHODS FOR MEASURING DISTANCES 131 6.1 Introduction 131 6.2 Summary of Methods for Making Linear Measurements 131 6.3 Pacing 132 6.4 Odometer Readings 132 6.5 Optical Rangefinders 133 6.6 Tacheometry 133 6.7 Subtense Bar 133 PART II DISTANCE MEASUREMENTS BY TAPING 133 6.8 Introduction to Taping 133 6.9 Taping Equipment and Accessories 134 6.10 Care of Taping Equipment 135 6.11 Taping on Level Ground 136 6.12 Horizontal Measurements on Sloping Ground 138 6.13 Slope Measurements 140 6.14 Sources of Error in Taping 141 6.15 Tape Problems 145 6.16 Combined Corrections in a Taping Problem 147 PART III ELECTRONIC DISTANCE MEASUREMENT 148 6.17 Introduction 148 6.18 Propagation of Electromagnetic Energy 149 6.19 Principles of Electronic Distance Measurement 152 6.20 Electro-Optical Instruments 153 6.21 Total Station Instruments 156 6.22 EDM Instruments Without Reflectors 157 6.23 Computing Horizontal Lengths from Slope Distances 158 6.24 Errors in Electronic Distance Measurement 160 6.25 Using Software 165 Problems 165 Bibliography 168
7 • ANGLES, AZIMUTHS, AND BEARINGS 169 7.1 Introduction 169 7.2 Units of Angle Measurement 169 7.3 Kinds of Horizontal Angles 170 7.4 Direction of a Line 171 7.5 Azimuths 172 7.6 Bearings 173 7.7 Comparison of Azimuths and Bearings 174 7.8 Computing Azimuths 175 7.9 Computing Bearings 177 7.10 The Compass and the Earth’s Magnetic Field 179 7.11 Magnetic Declination 180 7.12 Variations in Magnetic Declination 181 7.13 Software for Determining Magnetic Declination 183 7.14 Local Attraction 184 7.15 Typical Magnetic Declination Problems 185 7.16 Mistakes 187 Problems 187 Bibliography 189
8 • TOTAL STATION INSTRUMENTS; ANGLE OBSERVATIONS 191 PART I TOTAL STATION INSTRUMENTS 191 8.1 Introduction 191 8.2 Characteristics of Total Station Instruments 191 8.3 Functions Performed by Total Station Instruments 194 8.4 Parts of a Total Station Instrument 195 8.5 Handling and Setting Up a Total Station Instrument 199 8.6 Servo-Driven and Remotely Operated Total Station Instruments 201 PART II ANGLE OBSERVATIONS 203 8.7 Relationship of Angles and Distances 203 8.8 Observing Horizontal Angles with Total Station Instruments 204 8.9 Observing Horizontal Angles by the Direction Method 206 8.10 Closing the Horizon 207 8.11 Observing Deflection Angles 209 8.12 Observing Azimuths 211 8.13 Observing Vertical Angles 211 8.14 Sights and Marks 213 8.15 Prolonging a Straight Line 214 8.16 Balancing-In 216 8.17 Random Traverse 217 8.18 Total Stations for Determining Elevation Differences 218 8.19 Adjustment of Total Station Instruments and Their Accessories 219 8.20 Sources of Error in Total Station Work 222 8.21 Propagation of Random Errors in Angle Observations 228 8.22 Mistakes 228 Problems 229 Bibliography 230
9 • TRAVERSING 231 9.1 Introduction 231 9.2 Observation of Traverse Angles or Directions 233 9.3 Observation of Traverse Lengths 234 9.4 Selection of Traverse Stations 235 9.5 Referencing Traverse Stations 235 9.6 Traverse Field Notes 237 9.7 Angle Misclosure 238 9.8 Traversing with Total Station Instruments 239 9.9 Radial Traversing 240 9.10 Sources of Error in Traversing 241 9.11 Mistakes in Traversing 242 Problems 242
10 • TRAVERSE COMPUTATIONS 245 10.1 Introduction 245 10.2 Balancing Angles 246 10.3 Computation of Preliminary Azimuths or Bearings 248 10.4 Departures and Latitudes 249 10.5 Departure and Latitude Closure Conditions 251 10.6 Traverse Linear Misclosure and Relative Precision 251 10.7 Traverse Adjustment 252 10.8 Rectangular Coordinates 255 10.9 Alternative Methods for Making Traverse Computations 256 10.10 Inversing 260 10.11 Computing Final Adjusted Traverse Lengths and Directions 261 10.12 Coordinate Computations in Boundary Surveys 263 10.13 Use of Open Traverses 265 10.14 State Plane Coordinate Systems 268 10.15 Traverse Computations Using Computers 269 10.16 Locating Blunders in Traverse Observations 269 10.17 Mistakes in Traverse Computations 272 Problems 272 Bibliography 275
11 • COORDINATE GEOMETRY IN SURVEYING CALCULATIONS 277 11.1 Introduction 277 11.2 Coordinate Forms of Equations for Lines and Circles 278 11.3 Perpendicular Distance from a Point to a Line 280 11.4 Intersection of Two Lines, Both Having Known Directions 282 11.5 Intersection of a Line with a Circle 284 11.6 Intersection of Two Circles 287 11.7 Three-Point Resection 289 11.8 Two-Dimensional Conformal Coordinate Transformation 292 11.9 Inaccessible Point Problem 297 11.10 Three-Dimensional Two-Point Resection 299 11.11 Software 302 Problems 303 Bibliography 307
12 • AREA 309 12.1 Introduction 309 12.2 Methods of Measuring Area 309 12.3 Area by Division Into Simple Figures 310 12.4 Area by Offsets from Straight Lines 311 12.5 Area by Coordinates 313 12.6 Area by Double-Meridian Distance Method 317 12.7 Area of Parcels with Circular Boundaries 320 12.8 Partitioning of Lands 321 12.9 Area by Measurements from Maps 325 12.10 Software 327 12.11 Sources of Error in Determining Areas 328 12.12 Mistakes in Determining Areas 328 Problems 328 Bibliography 330
13 • GLOBAL NAVIGATION SATELLITE SYSTEMS—INTRODUCTION AND PRINCIPLES OF OPERATION 331 13.1 Introduction 331 13.2 Overview of GPS 332 13.3 The GPS Signal 335 13.4 Reference Coordinate Systems 337 13.5 Fundamentals of Satellite Positioning 345 13.6 Errors in Observations 348 13.7 Differential Positioning 356 13.8 Kinematic Methods 358 13.9 Relative Positioning 359 13.10 Other Satellite Navigation Systems 362 13.11 The Future 364 Problems 365 Bibliography 366
14 • GLOBAL NAVIGATION SATELLITE SYSTEMS—STATIC SURVEYS 367 14.1 Introduction 367 14.2 Field Procedures in Satellite Surveys 369 14.3 Planning Satellite Surveys 372 14.4 Performing Static Surveys 384 14.5 Data Processing and Analysis 386 14.6 Sources of Errors in Satellite Surveys 393 14.7 Mistakes in Satellite Surveys 395 Problems 395 Bibliography 397
15 • GLOBAL NAVIGATION SATELLITE SYSTEMS—KINEMATIC SURVEYS 399 15.1 Introduction 399 15.2 Planning of Kinematic Surveys 400 15.3 Initialization 402 15.4 Equipment Used in Kinematic Surveys 403 15.5 Methods Used in Kinematic Surveys 405 15.6 Performing Post-Processed Kinematic Surveys 408 15.7 Communication in Real-Time Kinematic Surveys 411 15.8 Real-Time Networks 412 15.9 Performing Real-Time Kinematic Surveys 413 15.10 Machine Control 414 15.11 Errors in Kinematic Surveys 418 15.12 Mistakes in Kinematic Surveys 418 Problems 418 Bibliography 419
16 • ADJUSTMENTS BY LEAST SQUARES 421 16.1 Introduction 421 16.2 Fundamental Condition of Least Squares 423 16.3 Least-Squares Adjustment by the Observation Equation Method 424 16.4 Matrix Methods in Least-Squares Adjustment 428 16.5 Matrix Equations for Precisions of Adjusted Quantities 430 16.6 Least-Squares Adjustment of Leveling Circuits 432 16.7 Propagation of Errors 436 16.8 Least-Squares Adjustment of GNSS Baseline Vectors 437 16.9 Least-Squares Adjustment of Conventional Horizontal Plane Surveys 443 16.10 The Error Ellipse 452 16.11 Adjustment Procedures 457 16.12 Other Measures of Precision for Horizontal Stations 458 16.13 Software 460 16.14 Conclusions 460 Problems 461 Bibliography 466
17 • MAPPING SURVEYS 467 17.1 Introduction 467 17.2 Basic Methods for Performing Mapping Surveys 468 17.3 Map Scale 468 17.4 Control for Mapping Surveys 470 17.5 Contours 471 17.6 Characteristics of Contours 474 17.7 Direct and Indirect Methods of Locating Contours 474 17.8 Digital Elevation Models and Automated Contouring Systems 477 17.9 Basic Field Methods for Locating Topographic Details 479 17.10 Three-Dimensional Conformal Coordinate Transformation 488 17.11 Selection of Field Method 489 17.12 Working with Data Collectors and Field-to-Finish Software 490 17.13 Hydrographic Surveys 493 17.14 Sources of Error in Mapping Surveys 497 17.15 Mistakes in Mapping Surveys 498 Problems 498 Bibliography 500
18 • MAPPING 503 18.1 Introduction 503 18.2 Availability of Maps and Related Information 504 18.3 National Mapping Program 505 18.4 Accuracy Standards for Mapping 505 18.5 Manual and Computer-Aided Drafting Procedures 507 18.6 Map Design 508 18.7 Map Layout 510 18.8 Basic Map Plotting Procedures 512 18.9 Contour Interval 514 18.10 Plotting Contours 514 18.11 Lettering 515 18.12 Cartographic Map Elements 516 18.13 Drafting Materials 519 18.14 Automated Mapping and Computer-Aided Drafting Systems 519 18.15 Impacts of Modern Land and Geographic Information Systems on Mapping 525 18.16 Sources of Error in Mapping 526 18.17 Mistakes in Mapping 526 Problems 526 Bibliography 528
19 • CONTROL SURVEYS AND GEODETIC REDUCTIONS 529 19.1 Introduction 529 19.2 The Ellipsoid and Geoid 530 19.3 The Conventional Terrestrial Pole 532 19.4 Geodetic Position and Ellipsoidal Radii of Curvature 534 19.5 Geoid Undulation and Deflection of the Vertical 536 19.6 U.S. Reference Frames 538 19.7 Accuracy Standards and Specifications for Control Surveys 547 19.8 The National Spatial Reference System 550 19.9 Hierarchy of the National Horizontal Control Network 550 19.10 Hierarchy of the National Vertical Control Network 551 19.11 Control Point Descriptions 551 19.12 Field Procedures for Traditional Horizontal Control Surveys 554 19.13 Field Procedures for Vertical Control Surveys 559 19.14 Reduction of Field Observations to Their Geodetic Values 564 19.15 Geodetic Position Computations 577 19.16 The Local Geodetic Coordinate System 580 19.17 Three-Dimensional Coordinate Computations 581 19.18 Software 584 Problems 584 Bibliography 587
20 • STATE PLANE COORDINATES AND OTHER MAP PROJECTIONS 589 20.1 Introduction 589 20.2 Projections Used in State Plane Coordinate Systems 590 20.3 Lambert Conformal Conic Projection 593 20.4 Transverse Mercator Projection 594 20.5 State Plane Coordinates in NAD27 and NAD83 595 20.6 Computing SPCS83 Coordinates in the Lambert Conformal Conic System 596 20.7 Computing SPCS83 Coordinates in the Transverse Mercator System 601 20.8 Reduction of Distances and Angles to State Plane Coordinate Grids 608 20.9 Computing State Plane Coordinates of Traverse Stations 617 20.10 Surveys Extending from One Zone to Another 620 20.11 Conversions Between SPCS27 and SPCS83 621 20.12 The Universal Transverse Mercator Projection 622 20.13 Other Map Projections 623 20.14 Map Projection Software 627 Problems 628 Bibliography 631
21 • BOUNDARY SURVEYS 633 21.1 Introduction 633 21.2 Categories of Land Surveys 634 21.3 Historical Perspectives 635 21.4 Property Description by Metes and Bounds 636 21.5 Property Description by Block-and-Lot System 639 21.6 Property Description by Coordinates 641 21.7 Retracement Surveys 641 21.8 Subdivision Surveys 644 21.9 Partitioning Land 646 21.10 Registration of Title 647 21.11 Adverse Possession and Easements 648 21.12 Condominium Surveys 648 21.13 Geographic and Land Information Systems 655 21.14 Sources of Error in Boundary Surveys 655 21.15 Mistakes 655 Problems 656 Bibliography 658
22 • SURVEYS OF THE PUBLIC LANDS 659 22.1 Introduction 659 22.2 Instructions for Surveys of the Public Lands 660 22.3 Initial Point 663 22.4 Principal Meridian 664 22.5 Baseline 665 22.6 Standard Parallels (Correction Lines) 666 22.7 Guide Meridians 666 22.8 Township Exteriors, Meridional (Range) Lines, and Latitudinal (Township) Lines 667 22.9 Designation of Townships 668 22.10 Subdivision of a Quadrangle into Townships 668 22.11 Subdivision of a Township into Sections 670 22.12 Subdivision of Sections 671 22.13 Fractional Sections 672 22.14 Notes 672 22.15 Outline of Subdivision Steps 672 22.16 Marking Corners 674 22.17 Witness Corners 674 22.18 Meander Corners 675 22.19 Lost and Obliterated Corners 675 22.20 Accuracy of Public Lands Surveys 678 22.21 Descriptions by Township Section and Smaller Subdivision 678 22.22 BLM Land Information System 679 22.23 Sources of Error 680 22.24 Mistakes 680 Problems 681 Bibliography 683
23 • CONSTRUCTION SURVEYS 685 23.1 Introduction 685 23.2 Specialized Equipment for Construction Surveys 686 23.3 Horizontal and Vertical Control 689 23.4 Staking Out a Pipeline 691 23.5 Staking Pipeline Grades 692 23.6 Staking Out a Building 694 23.7 Staking Out Highways 698 23.8 Other Construction Surveys 703 23.9 Construction Surveys Using Total Station Instruments 704 23.10 Construction Surveys Using GNSS Equipment 706 23.11 Machine Guidance and Control 709 23.12 As-Built Surveys with Laser Scanning 710 23.13 Sources of Error in Construction Surveys 711 23.14 Mistakes 712 Problems 712 Bibliography 714
24 • HORIZONTAL CURVES 715 24.1 Introduction 715 24.2 Degree of Circular Curve 716 24.3 Definitions and Derivation of Circular Curve Formulas 718 24.4 Circular Curve Stationing 720 24.5 General Procedure of Circular Curve Layout by Deflection Angles 721 24.6 Computing Deflection Angles and Chords 723 24.7 Notes for Circular Curve Layout by Deflection Angles and Incremental Chords 725 24.8 Detailed Procedures for Circular Curve Layout by Deflection Angles and Incremental Chords 726 24.9 Setups on Curve 727 24.10 Metric Circular Curves by Deflection Angles and Incremental Chords 728 24.11 Circular Curve Layout by Deflection Angles and Total Chords 730 24.12 Computation of Coordinates on a Circular Curve 731 24.13 Circular Curve Layout by Coordinates 733 24.14 Curve Stakeout Using GNSS Receivers and Robotic Total Stations 738 24.15 Circular Curve Layout by Offsets 739 24.16 Special Circular Curve Problems 742 24.17 Compound and Reverse Curves 743 24.18 Sight Distance on Horizontal Curves 743 24.19 Spirals 744 24.20 Computation of “As-Built” Circular Alignments 749 24.21 Sources of Error in Laying Out Circular Curves 752 24.22 Mistakes 752 Problems 753 Bibliography 755
25 • VERTICAL CURVES 757 25.1 Introduction 757 25.2 General Equation of a Vertical Parabolic Curve 758 25.3 Equation of an Equal Tangent Vertical Parabolic Curve 759 25.4 High or Low Point on a Vertical Curve 761 25.5 Vertical Curve Computations Using the Tangent Offset Equation 761 25.6 Equal Tangent Property of a Parabola 765 25.7 Curve Computations by Proportion 766 25.8 Staking a Vertical Parabolic Curve 766 25.9 Machine Control in Grading Operations 767 25.10 Computations for an Unequal Tangent Vertical Curve 767 25.11 Designing a Curve to Pass Through a Fixed Point 770 25.12 Sight Distance 771 25.13 Sources of Error in Laying Out Vertical Curves 773 25.14 Mistakes 774 Problems 774 Bibliography 776
26 • VOLUMES 777 26.1 Introduction 777 26.2 Methods of Volume Measurement 777 26.3 The Cross-Section Method 778 26.4 Types of Cross Sections 779 26.5 Average-End-Area Formula 780 26.6 Determining End Areas 781 26.7 Computing Slope Intercepts 784 26.8 Prismoidal Formula 786 26.9 Volume Computations 788 26.10 Unit-Area, or Borrow-Pit, Method 790 26.11 Contour-Area Method 791 26.12 Measuring Volumes of Water Discharge 793 26.13 Software 794 26.14 Sources of Error in Determining Volumes 795 26.15 Mistakes 795 Problems 795 Bibliography 798
27 • PHOTOGRAMMETRY 799 27.1 Introduction 799 27.2 Uses of Photogrammetry 800 27.3 Aerial Cameras 801 27.4 Types of Aerial Photographs 803 27.5 Vertical Aerial Photographs 804 27.6 Scale of a Vertical Photograph 806 27.7 Ground Coordinates from a Single Vertical Photograph 810 27.8 Relief Displacement on a Vertical Photograph 811 27.9 Flying Height of a Vertical Photograph 813 27.10 Stereoscopic Parallax 814 27.11 Stereoscopic Viewing 817 27.12 Stereoscopic Measurement of Parallax 819 27.13 Analytical Photogrammetry 820 27.14 Stereoscopic Plotting Instruments 821 27.15 Orthophotos 826 27.16 Ground Control for Photogrammetry 827 27.17 Flight Planning 828 27.18 Airborne Laser-Mapping Systems 830 27.19 Remote Sensing 831 27.20 Software 837 27.21 Sources of Error in Photogrammetry 838 27.22 Mistakes 838 Problems 839 Bibliography 842
28 • INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS 843 28.1 Introduction 843 28.2 Land Information Systems 846 28.3 GIS Data Sources and Classifications 846 28.4 Spatial Data 846 28.5 Nonspatial Data 852 28.6 Data Format Conversions 853 28.7 Creating GIS Databases 856 28.8 Metadata 862 28.9 GIS Analytical Functions 862 28.10 GIS Applications 867 28.11 Data Sources 867 Problems 869 Bibliography 871
APPENDIX A • DUMPY LEVELS, TRANSITS, AND THEODOLITES 873 APPENDIX B • EXAMPLE NOTEFORMS 888 APPENDIX C • ASTRONOMICAL OBSERVATIONS 895 APPENDIX D • USING THE WORKSHEETS FROM THE COMPANION WEBSITE 911 APPENDIX E • INTRODUCTION TO MATRICES 917 APPENDIX F • U.S. STATE PLANE COORDINATE SYSTEM DEFINING PARAMETERS 923 APPENDIX G • ANSWERS TO SELECTED PROBLEMS 927 INDEX 933
Relate keywords
elementary surveying an introduction to geomatics 13th edition solutions pdf
elementary surveying an introduction to geomatics 13th edition pdf download
elementary surveying an introduction to geomatics thirteenth edition
elementary surveying an introduction to geomatics 13th edition
elementary surveying an introduction to geomatics 13th edition answers
elementary surveying an introduction to geomatics 13th edition solutions
elementary surveying - an introduction to geomatics 13th ed
elementary surveying an introduction to geomatics 13th edition solutions manual
elementary surveying an introduction to geomatics 13th edition pdf solutions
0 notes
thorsenmark · 2 years
Video
Letting Nature Pamper Me with Snapshots of Big Bend National Park
flickr
Letting Nature Pamper Me with Snapshots of Big Bend National Park by Mark Stevens Via Flickr: While walking along the trails of the Sam Nail Ranch with a view looking to the west to the Chisos Mountains. My thinking in compositing this image was to use the nearby desert plant-life and have that create a layered look to Ward Mountain off in the distance. Blue skies and sunshine above would be that color contrast to compliment the earth-tones in the lower portion of the image. I did some initial post-processing work making adjustments to contrast, brightness and saturation while playing around as I learned how to work with DxO PhotoLab 5. I then exported a TIFF image to Nik Color Efex Pro 4 where I added a Polarization, Foliage and Pro Contrast filter for that last effect on the image captured.
5 notes · View notes
Text
Solution Manual for Elementary Surveying An Introduction to Geomatics 13th Edition by Ghilani
This is Full Solution Manual for Elementary Surveying: An Introduction to Geomatics, 13th Edition Charles D. Ghilani
Click link bellow to view sample:
https://getbooksolutions.com/wp-content/uploads/2017/01/Solution-Manual-for-Elementary-Surveying-An-Introduction-to-Geomatics-13th-Edition-Charles-D-Ghilani.pdf
Origin Book information:
Charles D. Ghilani
Hardcover: 984 pages
Publisher: Prentice Hall; 13 edition (January 8, 2011)
Language: English
ISBN-10: 0132554348
ISBN-13: 978-0132554343
what is solution manual elementary surveying an introduction to geomatics 13th edition where you can download  solution manual elementary surveying an introduction to geomatics 13th edition? and how you can get solution manual elementary surveying an introduction to geomatics 13th edition in fastest way?
You will be guided to the product download page immediately once you complete the payment. If you have any questions, or would like a receive a sample chapter before your purchase, please contact us via email :
Full download link:
https://getbooksolutions.com/download/solution-manual-for-elementary-surveying-an-introduction-to-geomatics-13th-edition-charles-d-ghilani
Table of Contents
1 • INTRODUCTION 1 1.1 Definition of Surveying 1 1.2 Geomatics 3 1.3 History of Surveying 4 1.4 Geodetic and Plane Surveys 9 1.5 Importance of Surveying 10 1.6 Specialized Types of Surveys 11 1.7 Surveying Safety 13 1.8 Land and Geographic Information Systems 14 1.9 Federal Surveying and Mapping Agencies 15 1.10 The Surveying Profession 16 1.11 Professional Surveying Organizations 17 1.12 Surveying on the Internet 18 1.13 Future Challenges in Surveying 19 Problems 20 Bibliography 21
2 • UNITS, SIGNIFICANT FIGURES, AND FIELD NOTES 23 PART I UNITS AND SIGNIFICANT FIGURES 23 2.1 Introduction 23 2.2 Units of Measurement 23 2.3 International System of Units (SI) 25 2.4 Significant Figures 27 2.5 Rounding Off Numbers 29 PART II FIELD NOTES 30 2.6 Field Notes 30 2.7 General Requirements of Handwritten Field Notes 31 2.8 Types of Field Books 32 2.9 Kinds of Notes 33 2.10 Arrangements of Notes 33 2.11 Suggestions for Recording Notes 35 2.12 Introduction to Data Collectors 36 2.13 Transfer of Files from Data Collectors 39 2.14 Digital Data File Management 41 2.15 Advantages and Disadvantages of Data Collectors 42 Problems 43 Bibliography 44
3 • THEORY OF ERRORS IN OBSERVATIONS 45 3.1 Introduction 45 3.2 Direct and Indirect Observations 45 3.3 Errors in Measurements 46 3.4 Mistakes 46 3.5 Sources of Errors in Making Observations 47 3.6 Types of Errors 47 3.7 Precision and Accuracy 48 3.8 Eliminating Mistakes and Systematic Errors 49 3.9 Probability 49 3.10 Most Probable Value 50 3.11 Residuals 51 3.12 Occurrence of Random Errors 51 3.13 General Laws of Probability 55 3.14 Measures of Precision 55 3.15 Interpretation of Standard Deviation 58 3.16 The 50, 90, and 95 Percent Errors 58 3.17 Error Propagation 60 3.18 Applications 65 3.19 Conditional Adjustment of Observations 65 3.20 Weights of Observations 66 3.21 Least-Squares Adjustment 67 3.22 Using Software 68 Problems 69 Bibliography 71
4 • LEVELING–THEORY, METHODS, AND EQUIPMENT 73 PART I LEVELING–THEORY AND METHODS 73 4.1 Introduction 73 4.2 Definitions 73 4.3 North American Vertical Datum 75 4.4 Curvature and Refraction 76 4.5 Methods for Determining Differences in Elevation 78 PART II EQUIPMENT FOR DIFFERENTIAL LEVELING 85 4.6 Categories of Levels 85 4.7 Telescopes 86 4.8 Level Vials 87 4.9 Tilting Levels 89 4.10 Automatic Levels 90 4.11 Digital Levels 91 4.12 Tripods 93 4.13 Hand Level 93 4.14 Level Rods 94 4.15 Testing and Adjusting Levels 96 Problems 100 Bibliography 102
5 • LEVELING–FIELD PROCEDURES AND COMPUTATIONS 103 5.1 Introduction 103 5.2 Carrying and Setting Up a Level 103 5.3 Duties of a Rodperson 105 5.4 Differential Leveling 106 5.5 Precision 112 5.6 Adjustments of Simple Level Circuits 113 5.7 Reciprocal Leveling 114 5.8 Three-Wire Leveling 115 5.9 Profile Leveling 117 5.10 Grid, Cross-Section, or Borrow-Pit Leveling 121 5.11 Use of the Hand Level 122 5.12 Sources of Error in Leveling 122 5.13 Mistakes 124 5.14 Reducing Errors and Eliminating Mistakes 125 5.15 Using Software 125 Problems 127 Bibliography 129
6 • DISTANCE MEASUREMENT 131 PART I METHODS FOR MEASURING DISTANCES 131 6.1 Introduction 131 6.2 Summary of Methods for Making Linear Measurements 131 6.3 Pacing 132 6.4 Odometer Readings 132 6.5 Optical Rangefinders 133 6.6 Tacheometry 133 6.7 Subtense Bar 133 PART II DISTANCE MEASUREMENTS BY TAPING 133 6.8 Introduction to Taping 133 6.9 Taping Equipment and Accessories 134 6.10 Care of Taping Equipment 135 6.11 Taping on Level Ground 136 6.12 Horizontal Measurements on Sloping Ground 138 6.13 Slope Measurements 140 6.14 Sources of Error in Taping 141 6.15 Tape Problems 145 6.16 Combined Corrections in a Taping Problem 147 PART III ELECTRONIC DISTANCE MEASUREMENT 148 6.17 Introduction 148 6.18 Propagation of Electromagnetic Energy 149 6.19 Principles of Electronic Distance Measurement 152 6.20 Electro-Optical Instruments 153 6.21 Total Station Instruments 156 6.22 EDM Instruments Without Reflectors 157 6.23 Computing Horizontal Lengths from Slope Distances 158 6.24 Errors in Electronic Distance Measurement 160 6.25 Using Software 165 Problems 165 Bibliography 168
7 • ANGLES, AZIMUTHS, AND BEARINGS 169 7.1 Introduction 169 7.2 Units of Angle Measurement 169 7.3 Kinds of Horizontal Angles 170 7.4 Direction of a Line 171 7.5 Azimuths 172 7.6 Bearings 173 7.7 Comparison of Azimuths and Bearings 174 7.8 Computing Azimuths 175 7.9 Computing Bearings 177 7.10 The Compass and the Earth’s Magnetic Field 179 7.11 Magnetic Declination 180 7.12 Variations in Magnetic Declination 181 7.13 Software for Determining Magnetic Declination 183 7.14 Local Attraction 184 7.15 Typical Magnetic Declination Problems 185 7.16 Mistakes 187 Problems 187 Bibliography 189
8 • TOTAL STATION INSTRUMENTS; ANGLE OBSERVATIONS 191 PART I TOTAL STATION INSTRUMENTS 191 8.1 Introduction 191 8.2 Characteristics of Total Station Instruments 191 8.3 Functions Performed by Total Station Instruments 194 8.4 Parts of a Total Station Instrument 195 8.5 Handling and Setting Up a Total Station Instrument 199 8.6 Servo-Driven and Remotely Operated Total Station Instruments 201 PART II ANGLE OBSERVATIONS 203 8.7 Relationship of Angles and Distances 203 8.8 Observing Horizontal Angles with Total Station Instruments 204 8.9 Observing Horizontal Angles by the Direction Method 206 8.10 Closing the Horizon 207 8.11 Observing Deflection Angles 209 8.12 Observing Azimuths 211 8.13 Observing Vertical Angles 211 8.14 Sights and Marks 213 8.15 Prolonging a Straight Line 214 8.16 Balancing-In 216 8.17 Random Traverse 217 8.18 Total Stations for Determining Elevation Differences 218 8.19 Adjustment of Total Station Instruments and Their Accessories 219 8.20 Sources of Error in Total Station Work 222 8.21 Propagation of Random Errors in Angle Observations 228 8.22 Mistakes 228 Problems 229 Bibliography 230
9 • TRAVERSING 231 9.1 Introduction 231 9.2 Observation of Traverse Angles or Directions 233 9.3 Observation of Traverse Lengths 234 9.4 Selection of Traverse Stations 235 9.5 Referencing Traverse Stations 235 9.6 Traverse Field Notes 237 9.7 Angle Misclosure 238 9.8 Traversing with Total Station Instruments 239 9.9 Radial Traversing 240 9.10 Sources of Error in Traversing 241 9.11 Mistakes in Traversing 242 Problems 242
10 • TRAVERSE COMPUTATIONS 245 10.1 Introduction 245 10.2 Balancing Angles 246 10.3 Computation of Preliminary Azimuths or Bearings 248 10.4 Departures and Latitudes 249 10.5 Departure and Latitude Closure Conditions 251 10.6 Traverse Linear Misclosure and Relative Precision 251 10.7 Traverse Adjustment 252 10.8 Rectangular Coordinates 255 10.9 Alternative Methods for Making Traverse Computations 256 10.10 Inversing 260 10.11 Computing Final Adjusted Traverse Lengths and Directions 261 10.12 Coordinate Computations in Boundary Surveys 263 10.13 Use of Open Traverses 265 10.14 State Plane Coordinate Systems 268 10.15 Traverse Computations Using Computers 269 10.16 Locating Blunders in Traverse Observations 269 10.17 Mistakes in Traverse Computations 272 Problems 272 Bibliography 275
11 • COORDINATE GEOMETRY IN SURVEYING CALCULATIONS 277 11.1 Introduction 277 11.2 Coordinate Forms of Equations for Lines and Circles 278 11.3 Perpendicular Distance from a Point to a Line 280 11.4 Intersection of Two Lines, Both Having Known Directions 282 11.5 Intersection of a Line with a Circle 284 11.6 Intersection of Two Circles 287 11.7 Three-Point Resection 289 11.8 Two-Dimensional Conformal Coordinate Transformation 292 11.9 Inaccessible Point Problem 297 11.10 Three-Dimensional Two-Point Resection 299 11.11 Software 302 Problems 303 Bibliography 307
12 • AREA 309 12.1 Introduction 309 12.2 Methods of Measuring Area 309 12.3 Area by Division Into Simple Figures 310 12.4 Area by Offsets from Straight Lines 311 12.5 Area by Coordinates 313 12.6 Area by Double-Meridian Distance Method 317 12.7 Area of Parcels with Circular Boundaries 320 12.8 Partitioning of Lands 321 12.9 Area by Measurements from Maps 325 12.10 Software 327 12.11 Sources of Error in Determining Areas 328 12.12 Mistakes in Determining Areas 328 Problems 328 Bibliography 330
13 • GLOBAL NAVIGATION SATELLITE SYSTEMS—INTRODUCTION AND PRINCIPLES OF OPERATION 331 13.1 Introduction 331 13.2 Overview of GPS 332 13.3 The GPS Signal 335 13.4 Reference Coordinate Systems 337 13.5 Fundamentals of Satellite Positioning 345 13.6 Errors in Observations 348 13.7 Differential Positioning 356 13.8 Kinematic Methods 358 13.9 Relative Positioning 359 13.10 Other Satellite Navigation Systems 362 13.11 The Future 364 Problems 365 Bibliography 366
14 • GLOBAL NAVIGATION SATELLITE SYSTEMS—STATIC SURVEYS 367 14.1 Introduction 367 14.2 Field Procedures in Satellite Surveys 369 14.3 Planning Satellite Surveys 372 14.4 Performing Static Surveys 384 14.5 Data Processing and Analysis 386 14.6 Sources of Errors in Satellite Surveys 393 14.7 Mistakes in Satellite Surveys 395 Problems 395 Bibliography 397
15 • GLOBAL NAVIGATION SATELLITE SYSTEMS—KINEMATIC SURVEYS 399 15.1 Introduction 399 15.2 Planning of Kinematic Surveys 400 15.3 Initialization 402 15.4 Equipment Used in Kinematic Surveys 403 15.5 Methods Used in Kinematic Surveys 405 15.6 Performing Post-Processed Kinematic Surveys 408 15.7 Communication in Real-Time Kinematic Surveys 411 15.8 Real-Time Networks 412 15.9 Performing Real-Time Kinematic Surveys 413 15.10 Machine Control 414 15.11 Errors in Kinematic Surveys 418 15.12 Mistakes in Kinematic Surveys 418 Problems 418 Bibliography 419
16 • ADJUSTMENTS BY LEAST SQUARES 421 16.1 Introduction 421 16.2 Fundamental Condition of Least Squares 423 16.3 Least-Squares Adjustment by the Observation Equation Method 424 16.4 Matrix Methods in Least-Squares Adjustment 428 16.5 Matrix Equations for Precisions of Adjusted Quantities 430 16.6 Least-Squares Adjustment of Leveling Circuits 432 16.7 Propagation of Errors 436 16.8 Least-Squares Adjustment of GNSS Baseline Vectors 437 16.9 Least-Squares Adjustment of Conventional Horizontal Plane Surveys 443 16.10 The Error Ellipse 452 16.11 Adjustment Procedures 457 16.12 Other Measures of Precision for Horizontal Stations 458 16.13 Software 460 16.14 Conclusions 460 Problems 461 Bibliography 466
17 • MAPPING SURVEYS 467 17.1 Introduction 467 17.2 Basic Methods for Performing Mapping Surveys 468 17.3 Map Scale 468 17.4 Control for Mapping Surveys 470 17.5 Contours 471 17.6 Characteristics of Contours 474 17.7 Direct and Indirect Methods of Locating Contours 474 17.8 Digital Elevation Models and Automated Contouring Systems 477 17.9 Basic Field Methods for Locating Topographic Details 479 17.10 Three-Dimensional Conformal Coordinate Transformation 488 17.11 Selection of Field Method 489 17.12 Working with Data Collectors and Field-to-Finish Software 490 17.13 Hydrographic Surveys 493 17.14 Sources of Error in Mapping Surveys 497 17.15 Mistakes in Mapping Surveys 498 Problems 498 Bibliography 500
18 • MAPPING 503 18.1 Introduction 503 18.2 Availability of Maps and Related Information 504 18.3 National Mapping Program 505 18.4 Accuracy Standards for Mapping 505 18.5 Manual and Computer-Aided Drafting Procedures 507 18.6 Map Design 508 18.7 Map Layout 510 18.8 Basic Map Plotting Procedures 512 18.9 Contour Interval 514 18.10 Plotting Contours 514 18.11 Lettering 515 18.12 Cartographic Map Elements 516 18.13 Drafting Materials 519 18.14 Automated Mapping and Computer-Aided Drafting Systems 519 18.15 Impacts of Modern Land and Geographic Information Systems on Mapping 525 18.16 Sources of Error in Mapping 526 18.17 Mistakes in Mapping 526 Problems 526 Bibliography 528
19 • CONTROL SURVEYS AND GEODETIC REDUCTIONS 529 19.1 Introduction 529 19.2 The Ellipsoid and Geoid 530 19.3 The Conventional Terrestrial Pole 532 19.4 Geodetic Position and Ellipsoidal Radii of Curvature 534 19.5 Geoid Undulation and Deflection of the Vertical 536 19.6 U.S. Reference Frames 538 19.7 Accuracy Standards and Specifications for Control Surveys 547 19.8 The National Spatial Reference System 550 19.9 Hierarchy of the National Horizontal Control Network 550 19.10 Hierarchy of the National Vertical Control Network 551 19.11 Control Point Descriptions 551 19.12 Field Procedures for Traditional Horizontal Control Surveys 554 19.13 Field Procedures for Vertical Control Surveys 559 19.14 Reduction of Field Observations to Their Geodetic Values 564 19.15 Geodetic Position Computations 577 19.16 The Local Geodetic Coordinate System 580 19.17 Three-Dimensional Coordinate Computations 581 19.18 Software 584 Problems 584 Bibliography 587
20 • STATE PLANE COORDINATES AND OTHER MAP PROJECTIONS 589 20.1 Introduction 589 20.2 Projections Used in State Plane Coordinate Systems 590 20.3 Lambert Conformal Conic Projection 593 20.4 Transverse Mercator Projection 594 20.5 State Plane Coordinates in NAD27 and NAD83 595 20.6 Computing SPCS83 Coordinates in the Lambert Conformal Conic System 596 20.7 Computing SPCS83 Coordinates in the Transverse Mercator System 601 20.8 Reduction of Distances and Angles to State Plane Coordinate Grids 608 20.9 Computing State Plane Coordinates of Traverse Stations 617 20.10 Surveys Extending from One Zone to Another 620 20.11 Conversions Between SPCS27 and SPCS83 621 20.12 The Universal Transverse Mercator Projection 622 20.13 Other Map Projections 623 20.14 Map Projection Software 627 Problems 628 Bibliography 631
21 • BOUNDARY SURVEYS 633 21.1 Introduction 633 21.2 Categories of Land Surveys 634 21.3 Historical Perspectives 635 21.4 Property Description by Metes and Bounds 636 21.5 Property Description by Block-and-Lot System 639 21.6 Property Description by Coordinates 641 21.7 Retracement Surveys 641 21.8 Subdivision Surveys 644 21.9 Partitioning Land 646 21.10 Registration of Title 647 21.11 Adverse Possession and Easements 648 21.12 Condominium Surveys 648 21.13 Geographic and Land Information Systems 655 21.14 Sources of Error in Boundary Surveys 655 21.15 Mistakes 655 Problems 656 Bibliography 658
22 • SURVEYS OF THE PUBLIC LANDS 659 22.1 Introduction 659 22.2 Instructions for Surveys of the Public Lands 660 22.3 Initial Point 663 22.4 Principal Meridian 664 22.5 Baseline 665 22.6 Standard Parallels (Correction Lines) 666 22.7 Guide Meridians 666 22.8 Township Exteriors, Meridional (Range) Lines, and Latitudinal (Township) Lines 667 22.9 Designation of Townships 668 22.10 Subdivision of a Quadrangle into Townships 668 22.11 Subdivision of a Township into Sections 670 22.12 Subdivision of Sections 671 22.13 Fractional Sections 672 22.14 Notes 672 22.15 Outline of Subdivision Steps 672 22.16 Marking Corners 674 22.17 Witness Corners 674 22.18 Meander Corners 675 22.19 Lost and Obliterated Corners 675 22.20 Accuracy of Public Lands Surveys 678 22.21 Descriptions by Township Section and Smaller Subdivision 678 22.22 BLM Land Information System 679 22.23 Sources of Error 680 22.24 Mistakes 680 Problems 681 Bibliography 683
23 • CONSTRUCTION SURVEYS 685 23.1 Introduction 685 23.2 Specialized Equipment for Construction Surveys 686 23.3 Horizontal and Vertical Control 689 23.4 Staking Out a Pipeline 691 23.5 Staking Pipeline Grades 692 23.6 Staking Out a Building 694 23.7 Staking Out Highways 698 23.8 Other Construction Surveys 703 23.9 Construction Surveys Using Total Station Instruments 704 23.10 Construction Surveys Using GNSS Equipment 706 23.11 Machine Guidance and Control 709 23.12 As-Built Surveys with Laser Scanning 710 23.13 Sources of Error in Construction Surveys 711 23.14 Mistakes 712 Problems 712 Bibliography 714
24 • HORIZONTAL CURVES 715 24.1 Introduction 715 24.2 Degree of Circular Curve 716 24.3 Definitions and Derivation of Circular Curve Formulas 718 24.4 Circular Curve Stationing 720 24.5 General Procedure of Circular Curve Layout by Deflection Angles 721 24.6 Computing Deflection Angles and Chords 723 24.7 Notes for Circular Curve Layout by Deflection Angles and Incremental Chords 725 24.8 Detailed Procedures for Circular Curve Layout by Deflection Angles and Incremental Chords 726 24.9 Setups on Curve 727 24.10 Metric Circular Curves by Deflection Angles and Incremental Chords 728 24.11 Circular Curve Layout by Deflection Angles and Total Chords 730 24.12 Computation of Coordinates on a Circular Curve 731 24.13 Circular Curve Layout by Coordinates 733 24.14 Curve Stakeout Using GNSS Receivers and Robotic Total Stations 738 24.15 Circular Curve Layout by Offsets 739 24.16 Special Circular Curve Problems 742 24.17 Compound and Reverse Curves 743 24.18 Sight Distance on Horizontal Curves 743 24.19 Spirals 744 24.20 Computation of “As-Built” Circular Alignments 749 24.21 Sources of Error in Laying Out Circular Curves 752 24.22 Mistakes 752 Problems 753 Bibliography 755
25 • VERTICAL CURVES 757 25.1 Introduction 757 25.2 General Equation of a Vertical Parabolic Curve 758 25.3 Equation of an Equal Tangent Vertical Parabolic Curve 759 25.4 High or Low Point on a Vertical Curve 761 25.5 Vertical Curve Computations Using the Tangent Offset Equation 761 25.6 Equal Tangent Property of a Parabola 765 25.7 Curve Computations by Proportion 766 25.8 Staking a Vertical Parabolic Curve 766 25.9 Machine Control in Grading Operations 767 25.10 Computations for an Unequal Tangent Vertical Curve 767 25.11 Designing a Curve to Pass Through a Fixed Point 770 25.12 Sight Distance 771 25.13 Sources of Error in Laying Out Vertical Curves 773 25.14 Mistakes 774 Problems 774 Bibliography 776
26 • VOLUMES 777 26.1 Introduction 777 26.2 Methods of Volume Measurement 777 26.3 The Cross-Section Method 778 26.4 Types of Cross Sections 779 26.5 Average-End-Area Formula 780 26.6 Determining End Areas 781 26.7 Computing Slope Intercepts 784 26.8 Prismoidal Formula 786 26.9 Volume Computations 788 26.10 Unit-Area, or Borrow-Pit, Method 790 26.11 Contour-Area Method 791 26.12 Measuring Volumes of Water Discharge 793 26.13 Software 794 26.14 Sources of Error in Determining Volumes 795 26.15 Mistakes 795 Problems 795 Bibliography 798
27 • PHOTOGRAMMETRY 799 27.1 Introduction 799 27.2 Uses of Photogrammetry 800 27.3 Aerial Cameras 801 27.4 Types of Aerial Photographs 803 27.5 Vertical Aerial Photographs 804 27.6 Scale of a Vertical Photograph 806 27.7 Ground Coordinates from a Single Vertical Photograph 810 27.8 Relief Displacement on a Vertical Photograph 811 27.9 Flying Height of a Vertical Photograph 813 27.10 Stereoscopic Parallax 814 27.11 Stereoscopic Viewing 817 27.12 Stereoscopic Measurement of Parallax 819 27.13 Analytical Photogrammetry 820 27.14 Stereoscopic Plotting Instruments 821 27.15 Orthophotos 826 27.16 Ground Control for Photogrammetry 827 27.17 Flight Planning 828 27.18 Airborne Laser-Mapping Systems 830 27.19 Remote Sensing 831 27.20 Software 837 27.21 Sources of Error in Photogrammetry 838 27.22 Mistakes 838 Problems 839 Bibliography 842
28 • INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS 843 28.1 Introduction 843 28.2 Land Information Systems 846 28.3 GIS Data Sources and Classifications 846 28.4 Spatial Data 846 28.5 Nonspatial Data 852 28.6 Data Format Conversions 853 28.7 Creating GIS Databases 856 28.8 Metadata 862 28.9 GIS Analytical Functions 862 28.10 GIS Applications 867 28.11 Data Sources 867 Problems 869 Bibliography 871
APPENDIX A • DUMPY LEVELS, TRANSITS, AND THEODOLITES 873 APPENDIX B • EXAMPLE NOTEFORMS 888 APPENDIX C • ASTRONOMICAL OBSERVATIONS 895 APPENDIX D • USING THE WORKSHEETS FROM THE COMPANION WEBSITE 911 APPENDIX E • INTRODUCTION TO MATRICES 917 APPENDIX F • U.S. STATE PLANE COORDINATE SYSTEM DEFINING PARAMETERS 923 APPENDIX G • ANSWERS TO SELECTED PROBLEMS 927 INDEX 933
0 notes
Solution Manual for Elementary Surveying: An Introduction to Geomatics, 13th Edition Charles D. Ghilani
This is Full Solution Manual for Elementary Surveying: An Introduction to Geomatics, 13th Edition Charles D. Ghilani
Click link bellow to view sample:
https://getbooksolutions.com/wp-content/uploads/2017/01/Solution-Manual-for-Elementary-Surveying-An-Introduction-to-Geomatics-13th-Edition-Charles-D-Ghilani.pdf
Origin Book information:
Charles D. Ghilani
Hardcover: 984 pages
Publisher: Prentice Hall; 13 edition (January 8, 2011)
Language: English
ISBN-10: 0132554348
ISBN-13: 978-0132554343
what is solution manual elementary surveying an introduction to geomatics 13th edition
where you can download  solution manual elementary surveying an introduction to geomatics 13th edition?
and how you can get solution manual elementary surveying an introduction to geomatics 13th edition in fastest way?
You will be guided to the product download page immediately once you complete the payment.If you have any questions, or would like a receive a sample chapter before your purchase, please contact us via email :
Full download link:
https://getbooksolutions.com/download/solution-manual-for-elementary-surveying-an-introduction-to-geomatics-13th-edition-charles-d-ghilani
Table of Contents
1 • INTRODUCTION 1
1.1 Definition of Surveying 1
1.2 Geomatics 3
1.3 History of Surveying 4
1.4 Geodetic and Plane Surveys 9
1.5 Importance of Surveying 10
1.6 Specialized Types of Surveys 11
1.7 Surveying Safety 13
1.8 Land and Geographic Information Systems 14
1.9 Federal Surveying and Mapping Agencies 15
1.10 The Surveying Profession 16
1.11 Professional Surveying Organizations 17
1.12 Surveying on the Internet 18
1.13 Future Challenges in Surveying 19
Problems 20
Bibliography 21
2 • UNITS, SIGNIFICANT FIGURES, AND FIELD NOTES 23
PART I UNITS AND SIGNIFICANT FIGURES 23
2.1 Introduction 23
2.2 Units of Measurement 23
2.3 International System of Units (SI) 25
2.4 Significant Figures 27
2.5 Rounding Off Numbers 29
PART II FIELD NOTES 30
2.6 Field Notes 30
2.7 General Requirements of Handwritten Field Notes 31
2.8 Types of Field Books 32
2.9 Kinds of Notes 33
2.10 Arrangements of Notes 33
2.11 Suggestions for Recording Notes 35
2.12 Introduction to Data Collectors 36
2.13 Transfer of Files from Data Collectors 39
2.14 Digital Data File Management 41
2.15 Advantages and Disadvantages of Data Collectors 42
Problems 43
Bibliography 44
3 • THEORY OF ERRORS IN OBSERVATIONS 45
3.1 Introduction 45
3.2 Direct and Indirect Observations 45
3.3 Errors in Measurements 46
3.4 Mistakes 46
3.5 Sources of Errors in Making Observations 47
3.6 Types of Errors 47
3.7 Precision and Accuracy 48
3.8 Eliminating Mistakes and Systematic Errors 49
3.9 Probability 49
3.10 Most Probable Value 50
3.11 Residuals 51
3.12 Occurrence of Random Errors 51
3.13 General Laws of Probability 55
3.14 Measures of Precision 55
3.15 Interpretation of Standard Deviation 58
3.16 The 50, 90, and 95 Percent Errors 58
3.17 Error Propagation 60
3.18 Applications 65
3.19 Conditional Adjustment of Observations 65
3.20 Weights of Observations 66
3.21 Least-Squares Adjustment 67
3.22 Using Software 68
Problems 69
Bibliography 71
4 • LEVELING–THEORY, METHODS, AND EQUIPMENT 73
PART I LEVELING–THEORY AND METHODS 73
4.1 Introduction 73
4.2 Definitions 73
4.3 North American Vertical Datum 75
4.4 Curvature and Refraction 76
4.5 Methods for Determining Differences in Elevation 78
PART II EQUIPMENT FOR DIFFERENTIAL LEVELING 85
4.6 Categories of Levels 85
4.7 Telescopes 86
4.8 Level Vials 87
4.9 Tilting Levels 89
4.10 Automatic Levels 90
4.11 Digital Levels 91
4.12 Tripods 93
4.13 Hand Level 93
4.14 Level Rods 94
4.15 Testing and Adjusting Levels 96
Problems 100
Bibliography 102
5 • LEVELING–FIELD PROCEDURES AND COMPUTATIONS 103
5.1 Introduction 103
5.2 Carrying and Setting Up a Level 103
5.3 Duties of a Rodperson 105
5.4 Differential Leveling 106
5.5 Precision 112
5.6 Adjustments of Simple Level Circuits 113
5.7 Reciprocal Leveling 114
5.8 Three-Wire Leveling 115
5.9 Profile Leveling 117
5.10 Grid, Cross-Section, or Borrow-Pit Leveling 121
5.11 Use of the Hand Level 122
5.12 Sources of Error in Leveling 122
5.13 Mistakes 124
5.14 Reducing Errors and Eliminating Mistakes 125
5.15 Using Software 125
Problems 127
Bibliography 129
6 • DISTANCE MEASUREMENT 131
PART I METHODS FOR MEASURING DISTANCES 131
6.1 Introduction 131
6.2 Summary of Methods for Making Linear Measurements 131
6.3 Pacing 132
6.4 Odometer Readings 132
6.5 Optical Rangefinders 133
6.6 Tacheometry 133
6.7 Subtense Bar 133
PART II DISTANCE MEASUREMENTS BY TAPING 133
6.8 Introduction to Taping 133
6.9 Taping Equipment and Accessories 134
6.10 Care of Taping Equipment 135
6.11 Taping on Level Ground 136
6.12 Horizontal Measurements on Sloping Ground 138
6.13 Slope Measurements 140
6.14 Sources of Error in Taping 141
6.15 Tape Problems 145
6.16 Combined Corrections in a Taping Problem 147
PART III ELECTRONIC DISTANCE MEASUREMENT 148
6.17 Introduction 148
6.18 Propagation of Electromagnetic Energy 149
6.19 Principles of Electronic Distance Measurement 152
6.20 Electro-Optical Instruments 153
6.21 Total Station Instruments 156
6.22 EDM Instruments Without Reflectors 157
6.23 Computing Horizontal Lengths from Slope Distances 158
6.24 Errors in Electronic Distance Measurement 160
6.25 Using Software 165
Problems 165
Bibliography 168
7 • ANGLES, AZIMUTHS, AND BEARINGS 169
7.1 Introduction 169
7.2 Units of Angle Measurement 169
7.3 Kinds of Horizontal Angles 170
7.4 Direction of a Line 171
7.5 Azimuths 172
7.6 Bearings 173
7.7 Comparison of Azimuths and Bearings 174
7.8 Computing Azimuths 175
7.9 Computing Bearings 177
7.10 The Compass and the Earth’s Magnetic Field 179
7.11 Magnetic Declination 180
7.12 Variations in Magnetic Declination 181
7.13 Software for Determining Magnetic Declination 183
7.14 Local Attraction 184
7.15 Typical Magnetic Declination Problems 185
7.16 Mistakes 187
Problems 187
Bibliography 189
8 • TOTAL STATION INSTRUMENTS; ANGLE OBSERVATIONS 191
PART I TOTAL STATION INSTRUMENTS 191
8.1 Introduction 191
8.2 Characteristics of Total Station Instruments 191
8.3 Functions Performed by Total Station Instruments 194
8.4 Parts of a Total Station Instrument 195
8.5 Handling and Setting Up a Total Station Instrument 199
8.6 Servo-Driven and Remotely Operated Total Station Instruments 201
PART II ANGLE OBSERVATIONS 203
8.7 Relationship of Angles and Distances 203
8.8 Observing Horizontal Angles with Total Station Instruments 204
8.9 Observing Horizontal Angles by the Direction Method 206
8.10 Closing the Horizon 207
8.11 Observing Deflection Angles 209
8.12 Observing Azimuths 211
8.13 Observing Vertical Angles 211
8.14 Sights and Marks 213
8.15 Prolonging a Straight Line 214
8.16 Balancing-In 216
8.17 Random Traverse 217
8.18 Total Stations for Determining Elevation Differences 218
8.19 Adjustment of Total Station Instruments and Their Accessories 219
8.20 Sources of Error in Total Station Work 222
8.21 Propagation of Random Errors in Angle Observations 228
8.22 Mistakes 228
Problems 229
Bibliography 230
9 • TRAVERSING 231
9.1 Introduction 231
9.2 Observation of Traverse Angles or Directions 233
9.3 Observation of Traverse Lengths 234
9.4 Selection of Traverse Stations 235
9.5 Referencing Traverse Stations 235
9.6 Traverse Field Notes 237
9.7 Angle Misclosure 238
9.8 Traversing with Total Station Instruments 239
9.9 Radial Traversing 240
9.10 Sources of Error in Traversing 241
9.11 Mistakes in Traversing 242
Problems 242
10 • TRAVERSE COMPUTATIONS 245
10.1 Introduction 245
10.2 Balancing Angles 246
10.3 Computation of Preliminary Azimuths or Bearings 248
10.4 Departures and Latitudes 249
10.5 Departure and Latitude Closure Conditions 251
10.6 Traverse Linear Misclosure and Relative Precision 251
10.7 Traverse Adjustment 252
10.8 Rectangular Coordinates 255
10.9 Alternative Methods for Making Traverse Computations 256
10.10 Inversing 260
10.11 Computing Final Adjusted Traverse Lengths and Directions 261
10.12 Coordinate Computations in Boundary Surveys 263
10.13 Use of Open Traverses 265
10.14 State Plane Coordinate Systems 268
10.15 Traverse Computations Using Computers 269
10.16 Locating Blunders in Traverse Observations 269
10.17 Mistakes in Traverse Computations 272
Problems 272
Bibliography 275
11 • COORDINATE GEOMETRY IN SURVEYING CALCULATIONS 277
11.1 Introduction 277
11.2 Coordinate Forms of Equations for Lines and Circles 278
11.3 Perpendicular Distance from a Point to a Line 280
11.4 Intersection of Two Lines, Both Having Known Directions 282
11.5 Intersection of a Line with a Circle 284
11.6 Intersection of Two Circles 287
11.7 Three-Point Resection 289
11.8 Two-Dimensional Conformal Coordinate Transformation 292
11.9 Inaccessible Point Problem 297
11.10 Three-Dimensional Two-Point Resection 299
11.11 Software 302
Problems 303
Bibliography 307
12 • AREA 309
12.1 Introduction 309
12.2 Methods of Measuring Area 309
12.3 Area by Division Into Simple Figures 310
12.4 Area by Offsets from Straight Lines 311
12.5 Area by Coordinates 313
12.6 Area by Double-Meridian Distance Method 317
12.7 Area of Parcels with Circular Boundaries 320
12.8 Partitioning of Lands 321
12.9 Area by Measurements from Maps 325
12.10 Software 327
12.11 Sources of Error in Determining Areas 328
12.12 Mistakes in Determining Areas 328
Problems 328
Bibliography 330
13 • GLOBAL NAVIGATION SATELLITE SYSTEMS—INTRODUCTION AND PRINCIPLES OF OPERATION 331
13.1 Introduction 331
13.2 Overview of GPS 332
13.3 The GPS Signal 335
13.4 Reference Coordinate Systems 337
13.5 Fundamentals of Satellite Positioning 345
13.6 Errors in Observations 348
13.7 Differential Positioning 356
13.8 Kinematic Methods 358
13.9 Relative Positioning 359
13.10 Other Satellite Navigation Systems 362
13.11 The Future 364
Problems 365
Bibliography 366
14 • GLOBAL NAVIGATION SATELLITE SYSTEMS—STATIC SURVEYS 367
14.1 Introduction 367
14.2 Field Procedures in Satellite Surveys 369
14.3 Planning Satellite Surveys 372
14.4 Performing Static Surveys 384
14.5 Data Processing and Analysis 386
14.6 Sources of Errors in Satellite Surveys 393
14.7 Mistakes in Satellite Surveys 395
Problems 395
Bibliography 397
15 • GLOBAL NAVIGATION SATELLITE SYSTEMS—KINEMATIC SURVEYS 399
15.1 Introduction 399
15.2 Planning of Kinematic Surveys 400
15.3 Initialization 402
15.4 Equipment Used in Kinematic Surveys 403
15.5 Methods Used in Kinematic Surveys 405
15.6 Performing Post-Processed Kinematic Surveys 408
15.7 Communication in Real-Time Kinematic Surveys 411
15.8 Real-Time Networks 412
15.9 Performing Real-Time Kinematic Surveys 413
15.10 Machine Control 414
15.11 Errors in Kinematic Surveys 418
15.12 Mistakes in Kinematic Surveys 418
Problems 418
Bibliography 419
16 • ADJUSTMENTS BY LEAST SQUARES 421
16.1 Introduction 421
16.2 Fundamental Condition of Least Squares 423
16.3 Least-Squares Adjustment by the Observation Equation Method 424
16.4 Matrix Methods in Least-Squares Adjustment 428
16.5 Matrix Equations for Precisions of Adjusted Quantities 430
16.6 Least-Squares Adjustment of Leveling Circuits 432
16.7 Propagation of Errors 436
16.8 Least-Squares Adjustment of GNSS Baseline Vectors 437
16.9 Least-Squares Adjustment of Conventional Horizontal Plane Surveys 443
16.10 The Error Ellipse 452
16.11 Adjustment Procedures 457
16.12 Other Measures of Precision for Horizontal Stations 458
16.13 Software 460
16.14 Conclusions 460
Problems 461
Bibliography 466
17 • MAPPING SURVEYS 467
17.1 Introduction 467
17.2 Basic Methods for Performing Mapping Surveys 468
17.3 Map Scale 468
17.4 Control for Mapping Surveys 470
17.5 Contours 471
17.6 Characteristics of Contours 474
17.7 Direct and Indirect Methods of Locating Contours 474
17.8 Digital Elevation Models and Automated Contouring Systems 477
17.9 Basic Field Methods for Locating Topographic Details 479
17.10 Three-Dimensional Conformal Coordinate Transformation 488
17.11 Selection of Field Method 489
17.12 Working with Data Collectors and Field-to-Finish Software 490
17.13 Hydrographic Surveys 493
17.14 Sources of Error in Mapping Surveys 497
17.15 Mistakes in Mapping Surveys 498
Problems 498
Bibliography 500
18 • MAPPING 503
18.1 Introduction 503
18.2 Availability of Maps and Related Information 504
18.3 National Mapping Program 505
18.4 Accuracy Standards for Mapping 505
18.5 Manual and Computer-Aided Drafting Procedures 507
18.6 Map Design 508
18.7 Map Layout 510
18.8 Basic Map Plotting Procedures 512
18.9 Contour Interval 514
18.10 Plotting Contours 514
18.11 Lettering 515
18.12 Cartographic Map Elements 516
18.13 Drafting Materials 519
18.14 Automated Mapping and Computer-Aided Drafting Systems 519
18.15 Impacts of Modern Land and Geographic Information Systems on Mapping 525
18.16 Sources of Error in Mapping 526
18.17 Mistakes in Mapping 526
Problems 526
Bibliography 528
19 • CONTROL SURVEYS AND GEODETIC REDUCTIONS 529
19.1 Introduction 529
19.2 The Ellipsoid and Geoid 530
19.3 The Conventional Terrestrial Pole 532
19.4 Geodetic Position and Ellipsoidal Radii of Curvature 534
19.5 Geoid Undulation and Deflection of the Vertical 536
19.6 U.S. Reference Frames 538
19.7 Accuracy Standards and Specifications for Control Surveys 547
19.8 The National Spatial Reference System 550
19.9 Hierarchy of the National Horizontal Control Network 550
19.10 Hierarchy of the National Vertical Control Network 551
19.11 Control Point Descriptions 551
19.12 Field Procedures for Traditional Horizontal Control Surveys 554
19.13 Field Procedures for Vertical Control Surveys 559
19.14 Reduction of Field Observations to Their Geodetic Values 564
19.15 Geodetic Position Computations 577
19.16 The Local Geodetic Coordinate System 580
19.17 Three-Dimensional Coordinate Computations 581
19.18 Software 584
Problems 584
Bibliography 587
20 • STATE PLANE COORDINATES AND OTHER MAP PROJECTIONS 589
20.1 Introduction 589
20.2 Projections Used in State Plane Coordinate Systems 590
20.3 Lambert Conformal Conic Projection 593
20.4 Transverse Mercator Projection 594
20.5 State Plane Coordinates in NAD27 and NAD83 595
20.6 Computing SPCS83 Coordinates in the Lambert Conformal Conic System 596
20.7 Computing SPCS83 Coordinates in the Transverse Mercator System 601
20.8 Reduction of Distances and Angles to State Plane Coordinate Grids 608
20.9 Computing State Plane Coordinates of Traverse Stations 617
20.10 Surveys Extending from One Zone to Another 620
20.11 Conversions Between SPCS27 and SPCS83 621
20.12 The Universal Transverse Mercator Projection 622
20.13 Other Map Projections 623
20.14 Map Projection Software 627
Problems 628
Bibliography 631
21 • BOUNDARY SURVEYS 633
21.1 Introduction 633
21.2 Categories of Land Surveys 634
21.3 Historical Perspectives 635
21.4 Property Description by Metes and Bounds 636
21.5 Property Description by Block-and-Lot System 639
21.6 Property Description by Coordinates 641
21.7 Retracement Surveys 641
21.8 Subdivision Surveys 644
21.9 Partitioning Land 646
21.10 Registration of Title 647
21.11 Adverse Possession and Easements 648
21.12 Condominium Surveys 648
21.13 Geographic and Land Information Systems 655
21.14 Sources of Error in Boundary Surveys 655
21.15 Mistakes 655
Problems 656
Bibliography 658
22 • SURVEYS OF THE PUBLIC LANDS 659
22.1 Introduction 659
22.2 Instructions for Surveys of the Public Lands 660
22.3 Initial Point 663
22.4 Principal Meridian 664
22.5 Baseline 665
22.6 Standard Parallels (Correction Lines) 666
22.7 Guide Meridians 666
22.8 Township Exteriors, Meridional (Range) Lines, and Latitudinal (Township) Lines 667
22.9 Designation of Townships 668
22.10 Subdivision of a Quadrangle into Townships 668
22.11 Subdivision of a Township into Sections 670
22.12 Subdivision of Sections 671
22.13 Fractional Sections 672
22.14 Notes 672
22.15 Outline of Subdivision Steps 672
22.16 Marking Corners 674
22.17 Witness Corners 674
22.18 Meander Corners 675
22.19 Lost and Obliterated Corners 675
22.20 Accuracy of Public Lands Surveys 678
22.21 Descriptions by Township Section and Smaller Subdivision 678
22.22 BLM Land Information System 679
22.23 Sources of Error 680
22.24 Mistakes 680
Problems 681
Bibliography 683
23 • CONSTRUCTION SURVEYS 685
23.1 Introduction 685
23.2 Specialized Equipment for Construction Surveys 686
23.3 Horizontal and Vertical Control 689
23.4 Staking Out a Pipeline 691
23.5 Staking Pipeline Grades 692
23.6 Staking Out a Building 694
23.7 Staking Out Highways 698
23.8 Other Construction Surveys 703
23.9 Construction Surveys Using Total Station Instruments 704
23.10 Construction Surveys Using GNSS Equipment 706
23.11 Machine Guidance and Control 709
23.12 As-Built Surveys with Laser Scanning 710
23.13 Sources of Error in Construction Surveys 711
23.14 Mistakes 712
Problems 712
Bibliography 714
24 • HORIZONTAL CURVES 715
24.1 Introduction 715
24.2 Degree of Circular Curve 716
24.3 Definitions and Derivation of Circular Curve Formulas 718
24.4 Circular Curve Stationing 720
24.5 General Procedure of Circular Curve Layout by Deflection Angles 721
24.6 Computing Deflection Angles and Chords 723
24.7 Notes for Circular Curve Layout by Deflection Angles and Incremental Chords 725
24.8 Detailed Procedures for Circular Curve Layout by Deflection Angles and Incremental Chords 726
24.9 Setups on Curve 727
24.10 Metric Circular Curves by Deflection Angles and Incremental Chords 728
24.11 Circular Curve Layout by Deflection Angles and Total Chords 730
24.12 Computation of Coordinates on a Circular Curve 731
24.13 Circular Curve Layout by Coordinates 733
24.14 Curve Stakeout Using GNSS Receivers and Robotic Total Stations 738
24.15 Circular Curve Layout by Offsets 739
24.16 Special Circular Curve Problems 742
24.17 Compound and Reverse Curves 743
24.18 Sight Distance on Horizontal Curves 743
24.19 Spirals 744
24.20 Computation of “As-Built” Circular Alignments 749
24.21 Sources of Error in Laying Out Circular Curves 752
24.22 Mistakes 752
Problems 753
Bibliography 755
25 • VERTICAL CURVES 757
25.1 Introduction 757
25.2 General Equation of a Vertical Parabolic Curve 758
25.3 Equation of an Equal Tangent Vertical Parabolic Curve 759
25.4 High or Low Point on a Vertical Curve 761
25.5 Vertical Curve Computations Using the Tangent Offset Equation 761
25.6 Equal Tangent Property of a Parabola 765
25.7 Curve Computations by Proportion 766
25.8 Staking a Vertical Parabolic Curve 766
25.9 Machine Control in Grading Operations 767
25.10 Computations for an Unequal Tangent Vertical Curve 767
25.11 Designing a Curve to Pass Through a Fixed Point 770
25.12 Sight Distance 771
25.13 Sources of Error in Laying Out Vertical Curves 773
25.14 Mistakes 774
Problems 774
Bibliography 776
26 • VOLUMES 777
26.1 Introduction 777
26.2 Methods of Volume Measurement 777
26.3 The Cross-Section Method 778
26.4 Types of Cross Sections 779
26.5 Average-End-Area Formula 780
26.6 Determining End Areas 781
26.7 Computing Slope Intercepts 784
26.8 Prismoidal Formula 786
26.9 Volume Computations 788
26.10 Unit-Area, or Borrow-Pit, Method 790
26.11 Contour-Area Method 791
26.12 Measuring Volumes of Water Discharge 793
26.13 Software 794
26.14 Sources of Error in Determining Volumes 795
26.15 Mistakes 795
Problems 795
Bibliography 798
27 • PHOTOGRAMMETRY 799
27.1 Introduction 799
27.2 Uses of Photogrammetry 800
27.3 Aerial Cameras 801
27.4 Types of Aerial Photographs 803
27.5 Vertical Aerial Photographs 804
27.6 Scale of a Vertical Photograph 806
27.7 Ground Coordinates from a Single Vertical Photograph 810
27.8 Relief Displacement on a Vertical Photograph 811
27.9 Flying Height of a Vertical Photograph 813
27.10 Stereoscopic Parallax 814
27.11 Stereoscopic Viewing 817
27.12 Stereoscopic Measurement of Parallax 819
27.13 Analytical Photogrammetry 820
27.14 Stereoscopic Plotting Instruments 821
27.15 Orthophotos 826
27.16 Ground Control for Photogrammetry 827
27.17 Flight Planning 828
27.18 Airborne Laser-Mapping Systems 830
27.19 Remote Sensing 831
27.20 Software 837
27.21 Sources of Error in Photogrammetry 838
27.22 Mistakes 838
Problems 839
Bibliography 842
28 • INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS 843
28.1 Introduction 843
28.2 Land Information Systems 846
28.3 GIS Data Sources and Classifications 846
28.4 Spatial Data 846
28.5 Nonspatial Data 852
28.6 Data Format Conversions 853
28.7 Creating GIS Databases 856
28.8 Metadata 862
28.9 GIS Analytical Functions 862
28.10 GIS Applications 867
28.11 Data Sources 867
Problems 869
Bibliography 871
APPENDIX A • DUMPY LEVELS, TRANSITS, AND THEODOLITES 873
APPENDIX B • EXAMPLE NOTEFORMS 888
APPENDIX C • ASTRONOMICAL OBSERVATIONS 895
APPENDIX D • USING THE WORKSHEETS FROM THE COMPANION WEBSITE 911
APPENDIX E • INTRODUCTION TO MATRICES 917
APPENDIX F • U.S. STATE PLANE COORDINATE SYSTEM DEFINING PARAMETERS 923
APPENDIX G • ANSWERS TO SELECTED PROBLEMS 927
INDEX 933
Relate keywordselementary surveying an introduction to geomatics 13th edition solutions pdf
elementary surveying an introduction to geomatics 13th edition pdf download
elementary surveying an introduction to geomatics thirteenth edition
elementary surveying an introduction to geomatics 13th edition
elementary surveying an introduction to geomatics 13th edition answers
elementary surveying an introduction to geomatics 13th edition solutions
elementary surveying – an introduction to geomatics 13th ed
elementary surveying an introduction to geomatics 13th edition solutions manual
elementary surveying an introduction to geomatics 13th edition pdf solutions
Solution Manual for Elementary Surveying: An Introduction to Geomatics, 13th Edition Charles D. Ghilani
0 notes
yhwhrulz · 3 years
Text
0 notes
svyat · 5 years
Photo
Tumblr media
- Женская куртка весна-осень Azimuth В 8323_106 - Цена и размеры: www.azimuthsport.ru/view_goods/zhenskaya-kurtka-parka-azimuth-b-8323-106-sinij-pid-209174-209175 ______________________________________________________ • Официальный поставщик #Azimuth в нашу страну🇷🇺 • Сертифицированные товары. • Доставка по Москве и МО. • Отправка заказов по СНГ. • Гарантия на товары 30 дней(с момента получения заказа). ______________________________________________________ #azimuthsport #пальтомосква #паркамосква #мембраннаяодежда #мембраннаякуртка #доставкапарок #деталиважны (at Maryino District) https://www.instagram.com/ski_suits_shop/p/BtxHUFJBbYt/?utm_source=ig_tumblr_share&igshid=jn25oautx6w
0 notes
thorsenmark · 3 months
Video
Petroglyphs in Mesa Verde National Park
flickr
Petroglyphs in Mesa Verde National Park by Mark Stevens Via Flickr: While hiking the Petroglyph Point Trail with a view looking to the east at petroglyphs and other rock art present. This is in Mesa Verde National Park. The rest was attempting to find an alignment, so that I could capture a look that included much of the stories on the wall. I later worked with control points in DxO PhotoLab 7 and then made some adjustments to bring out the contrast, saturation and brightness I wanted for the final image.
0 notes