Tumgik
#Laboratory of Plasma Chemistry and Planetary Studies
kuramirocket · 5 months
Text
Rafael Navarro-Gonzalez (1959-2021): The Mexican Astrobiologist Who Shaped Our Understanding of The Planet Mars
Tumblr media
Rafael Navarro-Gonzalez was a talented and internationally recognized chemist and astrobiologist who worked at NASA. Navarro-Gonzalez is known for his work with other researchers to study the planet Mars. He made fundamental contributions to several fields related to Astrobiology, the origin of life, and life in extreme environments. Among his many accomplishments, he helped lead the team that identified ancient organic compounds on Mars. He was a Co-I on the SAM instrument onboard NASA’s Mars Science Laboratory and on the HABIT instrument onboard ESA’s ExoMars mission. He was also on the Curiosity Mars rover team. His research blended laboratory simulations, fieldwork, and theoretical modeling in transdisciplines in chemistry, physics, and biology. This sort of dominance is unusual and requires a dynamic and intellectual curiosity beyond normal boundaries. He identified the role of volcanic lightning in the origin of life on Earth. He has established one of the very best laboratories in Latin-America.
He has published 137 papers, 4 edited books and over 225 abstracts. Among the most significant contributions are those that deal the detection of organics in Mars-like environments from cold (Antarctica), temperate (Atacama) and hot (Mojave and Libya) deserts on Earth.
Navarro-Gonzalez was born in Mexico City on April 25, 1959. He earned a bachelor’s in biology from the National Autonomous University of Mexico (UNAM) where he became full professor in 2002, and a PhD in Chemistry from the University of Maryland at College Park. Dr. Navarro-González established the Laboratory of Plasma Chemistry and Planetary Studies of the Institute of Nuclear Science at UNAM. 
Rafael Navarro-Gonzalez was the first recipient of the Molina fellowship award. This prize recognizes outstanding scientific achievement. He was also the recipient of the 2009 Alexander von Humboldt Medal and the World Academy of Sciences Award in Earth Sciences.
He died on Jan. 28, 2021 due to Covid-19-related complications.
In honor of his service, NASA named a mountain on Mars after him. The mountain stretches 450 feet (120 meters) tall, “Rafael Navarro Mountain” is located on Mount Sharp in northwest Gale Crater.
Tumblr media
Rafael Navarro Mountain
“Rafael was a good friend and dedicated scientist, and it has been a privilege and honor for our Mars exploration team to work with him over the years" said the principal investigator of Curiosity’s SAM experiment.
“We are truly honored to have a prominent hill named after our dad; it’s his and our dream come true to see this happen,” wrote Navarro-González’s children, Rafael and Karina Navarro Aceves, in a statement to NASA.
“Our dad was an accomplished scientist, but above all, a great human being who managed to balance work and family."
Sources: (x) (x) (x) (x) (x) (x)
4 notes · View notes
Photo
Tumblr media Tumblr media
All About the Laser (and Microphone) Atop Mars 2020, NASA's Next Rover SuperCam is a rock-vaporizing instrument that will help scientists hunt for Mars fossils. NASA is sending a new laser-toting robot to Mars. But unlike the lasers of science fiction, this one is used for studying mineralogy and chemistry from up to about 20 feet (7 meters) away. It might help scientists find signs of fossilized microbial life on the Red Planet, too. One of seven instruments aboard the Mars 2020 rover that launches this summer, SuperCam was built by a team of hundreds and packs what would typically require several sizable pieces of equipment into something no bigger than a cereal box. It fires a pulsed laser beam out of the rover's mast, or "head," to vaporize small portions of rock from a distance, providing information that will be essential to the mission's success. Here's a closer look at what makes the instrument so special: A Far Reach Using a laser beam will help researchers identify minerals that are beyond the reach of the rover's robotic arm or in areas too steep for the rover to go. It will also enable them to analyze a target before deciding whether to guide the rover there for further analysis. Of particular interest: minerals that formed in the presence of liquid water, like clays, carbonates and sulfates. Liquid water is essential to the existence of life as we know it, including microbes, which could have survived on Mars billions of years ago. Scientists can also use the information from SuperCam to help decide whether to capture rock cores for the rover's sample caching system. Mars 2020 will collect these core samples in metal tubes, eventually depositing them at a predetermined location for a future mission to retrieve and bring back to Earth. Laser Focus SuperCam is essentially a next-generation version of the Curiosity rover's ChemCam. Like its predecessor, SuperCam can use an infrared laser beam to heat the material it impacts to around 18,000 degrees Fahrenheit (10,000 degrees Celsius) - a method called laser induced breakdown spectroscopy, or LIBS - and vaporizes it. A special camera can then determine the chemical makeup of these rocks from the plasma that is created. Just like ChemCam, SuperCam will use artificial intelligence to seek out rock targets worth zapping during and after drives, when humans are out of the loop. In addition, this upgraded A.I. lets SuperCam point very precisely at small rock features. Another new feature in SuperCam is a green laser that can determine the molecular composition of surface materials. This green beam excites the chemical bonds in a sample and produces a signal depending on which elements are bonded together - a technique called Raman spectroscopy. SuperCam also uses the green laser to cause some minerals and carbon-based chemicals to emit light, or fluoresce. Minerals and organic chemicals fluoresce at different rates, so SuperCam's light sensor features a shutter that can close as quickly as 100 nanoseconds at a time - so fast that very few photons of light will enter it. Altering the shutter speed (a technique called time-resolved luminescence spectroscopy) will enable scientists to better determine the compounds present. Moreover, SuperCam can use visible and infrared (VISIR) light reflected from the Sun to study the mineral content of rocks and sediments. This VISIR technique complements the Raman spectroscopy; each technique is sensitive to different types of minerals. Laser With a Mic Check SuperCam includes a microphone so scientists can listen each time the laser hits a target. The popping sound created by the laser subtly changes depending on a rock's material properties. "The microphone serves a practical purpose by telling us something about our rock targets from a distance. But we can also use it to directly record the sound of the Martian landscape or the rover's mast swiveling," said Sylvestre Maurice of the Institute for Research in Astrophysics and Planetary Science in Toulouse, France. The Mars 2020 rover marks the third time this particular microphone design will go to the Red Planet, Maurice said. In the late 1990s, the same design rode aboard the Mars Polar Lander, which crashed on the surface. In 2008, the Phoenix mission experienced electronics issues that prevented the microphone from being used. In the case of Mars 2020, SuperCam doesn't have the only microphone aboard the rover: an entry, descent and landing microphone will capture all the sounds of the car-sized rover making its way to the surface. It will add audio to full-color video recorded by the rover's cameras, capturing a Mars landing like never before. Teamwork SuperCam is led by Los Alamos National Laboratory in New Mexico, where the instrument's Body Unit was developed. That part of the instrument includes several spectrometers, control electronics and software. The Mast Unit was developed and built by several laboratories of the CNRS (French research center) and French universities under the contracting authority of CNES (French space agency). Calibration targets on the rover deck are provided by Spain's University of Valladolid. TOP IMAGE....This image, taken in the Spacecraft Assembly Facility's High Bay 1 at the Jet Propulsion Laboratory in Pasadena, California, on July 23, 2019, shows a close-up of the head of Mars 2020's remote sensing mast. The mast head contains the SuperCam instrument (its lens is in the large circular opening). In the gray boxes beneath mast head are the two Mastcam-Z imagers. On the exterior sides of those imagers are the rover's two navigation cameras. JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington. LOWER IMAGE....The Mast Unit for Mars 2020's SuperCam, shown being tested here, will use a laser to vaporize and study rock material on the Red Planet's surface. Credit: LANL
11 notes · View notes
sciencespies · 4 years
Text
All about the laser (and microphone) atop Mars 2020, NASA's next rover
https://sciencespies.com/space/all-about-the-laser-and-microphone-atop-mars-2020-nasas-next-rover/
All about the laser (and microphone) atop Mars 2020, NASA's next rover
Tumblr media Tumblr media
Mars 2020’s mast, or “head,” includes a laser instrument called SuperCam that can vaporize rock material and study the resulting plasma. Credit: NASA/JPL-Caltech
NASA is sending a new laser-toting robot to Mars. But unlike the lasers of science fiction, this one is used for studying mineralogy and chemistry from up to about 20 feet (7 meters) away. It might help scientists find signs of fossilized microbial life on the Red Planet, too.
One of seven instruments aboard the Mars 2020 rover that launches this summer, SuperCam was built by a team of hundreds and packs what would typically require several sizable pieces of equipment into something no bigger than a cereal box. It fires a pulsed laser beam out of the rover’s mast, or “head,” to vaporize small portions of rock from a distance, providing information that will be essential to the mission’s success.
Here’s a closer look at what makes the instrument so special:
A Far Reach
Using a laser beam will help researchers identify minerals that are beyond the reach of the rover’s robotic arm or in areas too steep for the rover to go. It will also enable them to analyze a target before deciding whether to guide the rover there for further analysis. Of particular interest: minerals that formed in the presence of liquid water, like clays, carbonates and sulfates. Liquid water is essential to the existence of life as we know it, including microbes, which could have survived on Mars billions of years ago.
Scientists can also use the information from SuperCam to help decide whether to capture rock cores for the rover’s sample caching system. Mars 2020 will collect these core samples in metal tubes, eventually depositing them at a predetermined location for a future mission to retrieve and bring back to Earth.
youtube
Laser Focus
SuperCam is essentially a next-generation version of the Curiosity rover’s ChemCam. Like its predecessor, SuperCam can use an infrared laser beam to heat the material it impacts to around 18,000 degrees Fahrenheit (10,000 degrees Celsius) – a method called laser induced breakdown spectroscopy, or LIBS – and vaporizes it. A special camera can then determine the chemical makeup of these rocks from the plasma that is created.
Just like ChemCam, SuperCam will use artificial intelligence to seek out rock targets worth zapping during and after drives, when humans are out of the loop. In addition, this upgraded A.I. lets SuperCam point very precisely at small rock features.
Another new feature in SuperCam is a green laser that can determine the molecular composition of surface materials. This green beam excites the chemical bonds in a sample and produces a signal depending on which elements are bonded together – a technique called Raman spectroscopy. SuperCam also uses the green laser to cause some minerals and carbon-based chemicals to emit light, or fluoresce.
Minerals and organic chemicals fluoresce at different rates, so SuperCam’s light sensor features a shutter that can close as quickly as 100 nanoseconds at a time – so fast that very few photons of light will enter it. Altering the shutter speed (a technique called time-resolved luminescence spectroscopy) will enable scientists to better determine the compounds present.
Moreover, SuperCam can use visible and infrared (VISIR) light reflected from the Sun to study the mineral content of rocks and sediments. This VISIR technique complements the Raman spectroscopy; each technique is sensitive to different types of minerals.
Tumblr media
The Mast Unit for Mars 2020’s SuperCam, shown being tested here, will use a laser to vaporize and study rock material on the Red Planet’s surface. Credit: LANL
Laser With a Mic Check
SuperCam includes a microphone so scientists can listen each time the laser hits a target. The popping sound created by the laser subtly changes depending on a rock’s material properties.
“The microphone serves a practical purpose by telling us something about our rock targets from a distance. But we can also use it to directly record the sound of the Martian landscape or the rover’s mast swiveling,” said Sylvestre Maurice of the Institute for Research in Astrophysics and Planetary Science in Toulouse, France.
The Mars 2020 rover marks the third time this particular microphone design will go to the Red Planet, Maurice said. In the late 1990s, the same design rode aboard the Mars Polar Lander, which crashed on the surface. In 2008, the Phoenix mission experienced electronics issues that prevented the microphone from being used.
In the case of Mars 2020, SuperCam doesn’t have the only microphone aboard the rover: an entry, descent and landing microphone will capture all the sounds of the car-sized rover making its way to the surface. It will add audio to full-color video recorded by the rover’s cameras, capturing a Mars landing like never before.
Teamwork
SuperCam is led by Los Alamos National Laboratory in New Mexico, where the instrument’s Body Unit was developed. That part of the instrument includes several spectrometers, control electronics and software.
The Mast Unit was developed and built by several laboratories of the CNRS (French research center) and French universities under the contracting authority of CNES (French space agency). Calibration targets on the rover deck are provided by Spain’s University of Valladolid.
JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency’s headquarters in Washington.
Explore further
SuperCam instrument integrated on NASA’s Mars 2020 rover
More information: mars.nasa.gov/mars2020/
Provided by NASA
Citation: All about the laser (and microphone) atop Mars 2020, NASA’s next rover (2020, February 8) retrieved 8 February 2020 from https://phys.org/news/2020-02-laser-microphone-atop-mars-nasa.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
#Space
0 notes
spaceexp · 7 years
Text
NASA Approves Instruments for ESA’s ‘JUICE’ Mission to Jupiter System
NASA logo / ESA - JUICE Mission logo. April 14, 2017
NASA’s partnership in a future European Space Agency (ESA) mission to Jupiter and its moons has cleared a key milestone, moving from preliminary instrument design to implementation phase.
Designed to investigate the emergence of habitable worlds around gas giants, the JUpiter ICy Moons Explorer (JUICE) is scheduled to launch in five years, arriving at Jupiter in October 2029. JUICE will spend almost four years studying Jupiter’s giant magnetosphere, turbulent atmosphere, and its icy Galilean moons—Callisto, Ganymede and Europa.  The April 6 milestone, known as Key Decision Point C (KDP-C), is the agency-level approval for the project to enter building phase. It also provides a baseline for the mission’s schedule and budget. NASA’s total cost for the project is $114.4 million. The next milestone for the NASA contributions will be the Critical Design Review (CDR), which will take place in about one year. The CDR for the overall ESA JUICE mission is planned in spring 2019. “We’re pleased with the overall design of the instruments and we’re ready to begin implementation,” said Jim Green, director of the Planetary Science Division at NASA Headquarters in Washington. “In the very near future, JUICE will go from the drawing board to instrument building and then on to the launch pad in 2022.”
 JUICE
JUICE is a large-class mission—the first in ESA’s Cosmic Vision 2015-2025 program carrying a suite of 10 science instruments. NASA will provide the Ultraviolet Spectrograph (UVS), and also will provide subsystems and components for two additional instruments: the Particle Environment Package (PEP) and the Radar for Icy Moon Exploration (RIME) experiment. The UVS was selected to observe the dynamics and atmospheric chemistry of the Jovian system, including its icy satellites and volcanic moon Io. With the planet Jupiter itself, the instrument team hopes to learn more about the vertical structure of its stratosphere and determine the relationship between changing magnetospheric conditions to observed auroral structures. The instrument is provided by the Southwest Research Institute (SwRI), at a cost of $41.2 million. The PEP is a suite of six sensors led by the Swedish Institute of Space Physics (IRF), capable of providing a 3-D map of the plasma system that surrounds Jupiter. One of the six sensors, known as PEP-Hi, is provided by the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, and is comprised of two separate components known as JoEE and JENI. While JoEE is focused primarily on studying the magnetosphere of Ganymede, JENI observations will reveal the structure and dynamics of the donut-shaped cloud of gas and plasma that surrounds Europa. The total cost of the NASA contribution to the PEP instrument package is $42.4 million. The Radar for Icy Moon Exploration (RIME) experiment, an ice penetrating radar, which is a key instrument for achieving groundbreaking science on the geology, is led by the Italian Space Agency (ASI). NASA’s Jet Propulsion Laboratory (JPL), in Pasadena, California, is providing key subsystems to the instrument, which is designed to penetrate the surface of Jupiter's icy moons to learn more about their subsurface structure. The instrument will focus on Callisto, Ganymede, and Europa, to determine the formation mechanisms and interior processes that occur to produce bodies of subsurface water. On Europa, the instrument also will search for thin areas of ice and locations with the most geological activity, such as plumes. The total cost of the NASA contribution is $30.8 million. How will JUICE complement NASA’s Europa Clipper multiple flyby mission, also scheduled to launch in the early 2020s? “The missions are like close members of the same family. Together they will explore the entire Jovian system,” said Curt Niebur, program scientist at NASA Headquarters. “Clipper is focused on Europa and determining its habitability. JUICE is looking for a broader understanding how the entire group of Galilean satellites formed and evolved.” Niebur says by examining the complexity of the Jupiter system, we will learn more about how habitable areas form in our solar system and beyond. “We’ve learned that habitable environments can arise in surprising places and in unexpected ways. Life may not be limited to the surface of Earth-like worlds orbiting at just the right distance from their suns.”  Related article: ESA’s Jupiter mission moves off the drawing board http://orbiterchspacenews.blogspot.ch/2017/03/esas-jupiter-mission-moves-off-drawing.html Related links: NASA’s Europa Clipper: https://www.nasa.gov/feature/jpl/nasa-mission-named-europa-clipper ESA' JUICE: http://sci.esa.int/juice/ JUICE in depth: http://sci.esa.int/science-e/www/area/index.cfm?fareaid=129 Image, Text, Credits: NASA/Kindra Thomas/ESA. Best regards, Orbiter.ch Full article
56 notes · View notes
sciencebulletin · 4 years
Text
New high-energy-density physics research provides insights about the universe
Atoms and molecules behave very differently at extreme temperatures and pressures. Although such extreme matter doesn't exist naturally on the earth, it exists in abundance in the universe, especially in the deep interiors of planets and stars. Understanding how atoms react under high-pressure conditions—a field known as high-energy-density physics (HEDP)—gives scientists valuable insights into the fields of planetary science, astrophysics, fusion energy, and national security. One important question in the field of HED science is how matter under high-pressure conditions might emit or absorb radiation in ways that are different from our traditional understanding. In a paper published in Nature Communications, Suxing Hu, a distinguished scientist and group leader of the HEDP Theory Group at the University of Rochester Laboratory for Laser Energetics (LLE), together with colleagues from the LLE and France, has applied physics theory and calculations to predict the presence of two new phenomena—interspecies radiative transition (IRT) and the breakdown of dipole selection rule—in the transport of radiation in atoms and molecules under HEDP conditions. The research enhances an understanding of HEDP and could lead to more information about how stars and other astrophysical objects evolve in the universe. What Is Interspecies Radiative Transition (Irt)? Radiative transition is a physics process happening inside atoms and molecules, in which their electron or electrons can "jump" from different energy levels by either radiating/emitting or absorbing a photon. Scientists find that, for matter in our everyday life, such radiative transitions mostly happen within each individual atom or molecule; the electron does its jumping between energy levels belonging to the single atom or molecule, and the jumping does not typically occur between different atoms and molecules. However, Hu and his colleagues predict that when atoms and molecules are placed under HED conditions, and are squeezed so tightly that they become very close to each other, radiative transitions can involve neighboring atoms and molecules. "Namely, the electrons can now jump from one atom's energy levels to those of other neighboring atoms," Hu says. What Is The Dipole Selection Rule? Electrons inside an atom have specific symmetries. For example, "s-wave electrons" are always spherically symmetric, meaning they look like a ball, with the nucleus located in the atomic center; "p-wave electrons," on the other hand, look like dumbbells. D-waves and other electron states have more complicated shapes. Radiative transitions will mostly occur when the electron jumping follows the so-called dipole selection rule, in which the jumping electron changes its shape from s-wave to p-wave, from p-wave to d-wave, etc. Under normal, non-extreme conditions, Hu says, "one hardly sees electrons jumping among the same shapes, from s-wave to s-wave and from p-wave to p-wave, by emitting or absorbing photons." However, as Hu and his colleagues found, when materials are squeezed so tightly into the exotic HED state, the dipole selection rule is often broken down. "Under such extreme conditions found in the center of stars and classes of laboratory fusion experiments, non-dipole X-ray emissions and absorptions can occur, which was never imagined before," Hu says. Using Supercomputers To Study Hedp The researchers used supercomputers at both the University of Rochester's Center for Integrated Research Computing (CIRC) and at the LLE to conduct their calculations. "Thanks to the tremendous advances in high-energy laser and pulsed-power technologies, 'bringing stars to the Earth' has become reality for the past decade or two," Hu says. Hu and his colleagues performed their research using the density-functional theory (DFT) calculation, which offers a quantum mechanical description of the bonds between atoms and molecules in complex systems. The DFT method was first described in the 1960s, and was the subject of the 1998 Nobel Prize in Chemistry. DFT calculations have been continually improved since. One such improvement to enable DFT calculations to involve core electrons was made by Valentin Karasev, a scientist at the LLE and a co-author of the paper. The results indicate there are new emission/absorption lines appearing in the X-ray spectra of these extreme matter systems, which are from the previously-unknown channels of IRT and the breakdown of dipole selection rule. Hu and Philip Nilson, a senior scientist at the LLE and co-author of the paper, are currently planning future experiments that will involve testing these new theoretical predictions at the OMEGA laser facility at the LLE. The facility lets users create exotic HED conditions in nanosecond timescales, allowing scientists to probe the unique behaviors of matters at extreme conditions. "If proved to be true by experiments, these new discoveries will profoundly change how radiation transport is currently treated in exotic HED materials," Hu says. "These DFT-predicted new emission and absorption channels have never been considered so far in textbooks." Provided by University of Rochester More information: S. X. Hu et al. Interspecies radiative transition in warm and superdense plasma mixtures. Nature Communications (2020). DOI: 10.1038/s41467-020-15916-3 Image Credit: CC0 Public Domain Read the full article
0 notes
darbiblog-blog · 7 years
Text
Extreme Biology - Life at All Scales and Energies
New Post has been published on https://darbi.org/extreme-biology-life-at-all-scales-and-energies/
Extreme Biology - Life at All Scales and Energies
A number of fixations plaguing the astrobiology community regarding the pre-requisites for life is retarding the development of biology and the search for new life in the universe. These fixations work as smokescreens to obscure the myriads of other types of life forms that may be thriving even in our Solar System. Astrobiologists, particularly at NASA, appear to have a dogmatic fixation on studying life only at the biochemical level, a pre-occupation with water as a substrate for life, adamant on only studying carbon-based life forms, restricted to a very narrow temperature range and scale; and not even noticing that all the life forms that they have imagined in their wildest models are only based on particles within the (physicists’) Standard Model.
Physics affects biology in a more fundamental way than even chemistry or biochemistry. New developments in physics should open up areas to consider more extreme life forms. If we find dark matter and supersymmetric particles – would biologists then start thinking about dark matter and supersymmetric life forms? Should we be talking about “quantum biology”? When physicists talk of parallel universes, would biologists consider symbiosis between life forms in parallel universes? Is Darwin’s tree of life complete? Where are its roots?
Life at Extremely Small Scales – Nano and Quantum Life
Bacteria may be no larger than 10 microns; viruses no larger than 100 nanometers; molecules about 1 nanometer and atoms about 0.1 nanometers. Does scale impose a barrier to life or even consciousness? If viruses are considered life forms (as some leading astrobiologists argue) then they constitute “nano-life”.
Consciousness may even exist at the quantum scale. “In some strange way an electron or a photon [or any other elementary particle] seems to ‘know’ about changes in the environment and appears to respond accordingly,” says physicist Danah Zohar. A group at the Weizmann Institute in Israel has done a variation of the famous “double-slit” experiment. They used electrons, instead of photons, and observed how the resultant interference pattern (which indicates wave-like properties of the particle) dissipated the longer you watched the electrons go through the slits. As a wave the electron passes through both slits simultaneously but if, according to E Buks, it “senses” that it is being watched, the electron (as a particle) goes through only one path, diminishing the interference pattern. Elementary particles (such as photons and electrons) appear to possess a certain degree of “intelligence” and awareness of the environment. Renowned plasma and particle physicist, David Bohm, says “In some sense, a rudimentary mind-like quality is present even at the level of particle physics. As we go to subtlest levels this mind-like quality becomes stronger and more developed.”
In a new field called “quantum metaphysics”, Jay Alfred has proposed that consciousness is as fundamental a property of elementary particles as properties that make it “matter” or a “physical force” (for example, mass, spin, and charge) (see Conscious Particles, Fields and Waves, 2007). And just as mass, spin, and charge differ from one particle to another; it is probable that different particles have different degrees of consciousness. He has argued (see Jay Alfred, Our Invisible Bodies, 2006) that consciousness can manifest depending on the degree of quantum coherence and the intrinsic properties of the single particle. (This may be cited as the “Quantum Coherence Theory of Consciousness”.)
In studying particle consciousness we must not get distracted by their scale. In fact, (under quantum field theory) particles are excitations in a field that may be infinitely large. Every particle has a corresponding field. If a particle is considered a “unicellular life form” then a field of particles may be considered a “multicellular life form” – except that these “cells” go in and out of existence within the field. This obviously begs the question – Is the biochemical cell the smallest unit of life? If not, then a biological revolution, more important than the Copernican revolution in terms of its impact on society, is around the corner.
Life at Extremely Large Scales
Life at all scales is probable – including at the planetary, stellar and galactic scales; and even the universe and multiverse. The Gaia hypothesis has been proposed by James Lovelock and Lynn Margulis. Jay Alfred has proposed life at cosmic and global scales by using the “plasma metaphysics” model which believes that an extensive web of currents in space and on Earth exists which is both anatomically and physiologically similar to a neural network in the human brain. (See Are We Living in a Gigantic Brain? 2007) This web of currents in space not only looks like a neural network, it functions like one. We should not be surprised to see life being engineered using an electromagnetic substrate. A biochemical cell’s membrane is now thought to function like a semiconductor.
Perhaps a thought experiment could be enlightening. Imagine yourself as a cell within your brain carefully observing your environment with a nano-telescope. Would you consider your brain as being able to support consciousness? What you would see are neural cells alternately firing and resting; chemicals rushing to synapses and the zapping of nasty electrical currents – clearly not a very “habitable zone” for life or consciousness to exist – from your microscopic point of view. But we know better…
Could the plasma universe, with its network of currents, be a living, conscious entity? Was the quark-gluon plasma ball that inflated during the Big Bang a life form?
High Energy Biology – Life at High Energies and Temperatures
At high temperatures, molecules break up into atoms and atoms break up into a soup of sub-atomic particles called plasma. (Partially ionized gasses are also described as “plasma”.) Plasma life forms are likely to be the most common life form in the universe, given that plasma makes up more than 99% of our visible universe which is almost everywhere ionized. This is in stark contrast to complex carbon-based life forms, which according to the Rare Earth hypothesis proposed by Peter Ward and Donald Brownlee, would be rare in the universe due to a number of factors – including the need for an acceptable range of temperatures to survive.
Plasma is an ideal substrate for life at high temperatures. Plasma life forms would adapt to environments which would be considered hostile to carbon-based life forms. It is possible that plasma life forms were already present in the gas and materials that formed the Earth 4.6 billion years ago. Carbon-based biomolecular life forms only appeared 1 billion years later. Tsytovich and other scientists (including Lozneanu and Sanduloviciu, discussed below) have proposed that plasma life forms, in fact, spurred development of organic carbon-based life on Earth.
In 2003 physicists; Erzilia Lozneanu and Mircea Sanduloviciu of Cuza University, Romania, described in their research paper Minimal Cell System created in Laboratory by Self-Organization (published in Chaos, Solitons & Fractals, volume 18, page 335), how they created plasma spheres in the laboratory that can grow, replicate and communicate – fulfilling most of the traditional requirements for biological cells. The physicists “grew” spheres from a few micrometers up to three centimeters in diameter. They are convinced that these plasma spheres offer a radically new explanation of how life began and proposed that they were precursors to biological evolution. Lozneanu plasma spheres can reproduce by replicating, just like bacteria which are generally considered “immortal” and do not undergo “apoptosis” or programmed cell death.
It is still a mystery in mainstream biology as to how DNA originated. An international scientific team has discovered that in the gravity-free environment of space, particles in plasma will beat together to form string-like filaments which will then twist into helical strands resembling DNA that are electrically charged and are attracted to each other. Using a computer model of molecular dynamics, V N Tsytovich and his colleagues of the Russian Academy of Science showed (in their paper entitled From Plasma Crystals and Helical Structures towards Inorganic Living Matter, published in the New Journal of Physics in August 2007) that particles in plasma can undergo self-organization as electric charges become separated and the plasma becomes polarized. “These complex, self-organized plasma structures exhibit all the necessary properties to qualify them as candidates for inorganic living matter”, says Tsytovich, “they are autonomous, they reproduce and they evolve”.
Past studies, subject to Earth’s gravity, have shown that if enough particles are injected into a low-temperature plasma, they will spontaneously organize into crystal-like structures or “plasma crystals”. Jay Alfred has characterized “subtle bodies” as plasma crystals in his 2006 book Our Invisible Bodies. He has written extensively about the anatomy and physiology of these bioplasma bodies generating a new field of research called “plasma metaphysics”.
According to plasma metaphysics (see Jay Alfred, Our Invisible Bodies, 2006), plasma is subject to self-organization through both thermodynamics and electrodynamics. Plasma life forms have various mechanisms for the absorption and distribution of energy – in other words, a metabolic system. These include both vortexes (equivalent to orifices in common biological systems) and filamentary currents (equivalent to tubes and circulatory systems in common biological systems) which are structured by magnetic fields and driven by electric fields. Information is stored in the nucleus of the bioplasma body as compressed waveforms (using Fourier transforms) and used for replication. Plasma life forms are also enclosed in a membrane (like the membrane of a biological cell) and selectively admit charged particles (just like the semi-permeable membranes of common biological systems that admit ions i.e. charged particles into the cell). These structures (vortexes, filaments, membranes and the nucleus) have been described in the metaphysical and even religious literature more than 2,000 years old in connection with what is commonly referred to as “subtle bodies”. With a membrane that separates the body from the environment, metabolic and information systems, these subtle bodies are, in fact, plasma life forms.
biology 101 study guide
biology topics for research papers
6.1 biology study guide answers
Dark Matter Life Forms
According to plasma metaphysics (see Jay Alfred, Our Invisible Bodies, 2006), dark matter consists largely of a magnetic plasma of largely non-standard particles or “dark plasma”. Despite the many experiments to concoct life out of chemicals, there has yet been no sign of life as complex as the simplest biological cell. One of the main unanswered questions remains as to how DNA, with its double helix structure, was formed. Computer simulations by Tsytovich have confirmed that helical strands are generated in the (complex) plasma that looks and function like DNA. At a more fundamental level, it is well known that double helical and corkscrew structures are signature features of plasma dynamics. Could the missing ingredients that gave rise to life include certain components which are now included under dark matter? Jay Alfred has proposed the “Dark Panspermia” hypothesis (see Plasma Life Forms – Dark Panspermia, 2007) which proposes that dark matter was carried by comets, meteorites, and asteroids as they traversed the dark matter-filled space around the solar neighborhood. As they impacted the Earth, dark plasma cells acted as templates for the formation of biochemical cells. Both dark matter and ordinary life forms co-evolved over vast stretches of time.
Perhaps a bacterial cell in solution should be “diluted” (similar to procedures often encountered in homeopathy) – by very slowly and meticulously taking apart each component of the bacteria. A healthy human cell should then be introduced into the solution to see if it would undergo reactions that would be similar to reactions caused by the same type of bacteria composed of visible ordinary matter. If it does (as would be expected and claimed by homeopathic theory) it will betray the presence of the dark matter counterpart of the visible bacteria.
Inter-Substrate (Plasma-Carbon) Symbiogenesis
Biologists are beginning to realize that cooperation was just as important as competition in the evolution of life’s diversity and resilience. Every cell in the human body contains a mitochondrion which is thought to be a bacterial cell which invaded an early eukaryote. Instead of being digested, both cells tolerated each other and began to live with each other – a merger which provided synergies to both. This is a startling example of symbiogenesis. But then every multi-cellular animal or plant is also an obvious example of co-operation rather than competition. More than a 1,000 trillion cells are living peacefully and co-operating in your body; together with 500 to 100,000 species of bacteria. In fact, there are about ten times as many bacteria as human cells in the human body. Does symbiosis extend further?
There is anecdotal evidence that plasma life forms formed symbiotic relationships with the abundant carbon-based life forms on Earth – particularly with hominids. Unlike other known species of animals, the unique brains of hominids allowed them to activate the higher energy bioplasma bodies that co-evolved with the physical-biochemical body without necessarily having any conscious awareness that they were accessing a different cognitive system. Relationships developed between the lower energy carbon-based bodies and the higher energy bioplasma bodies which were sustained, perhaps, for several millions of years up to the present. This allowed the higher energy bioplasma bodies to evolve in a unique way on Earth.
Conclusion
Do we need to expand the definition of life? When and how does a life form become conscious of itself? Is consciousness a fundamental attribute of physical matter like spin, mass, and charge which physicists themselves do not quite understand? Is the cell (as defined in mainstream biology) the smallest unit of life? Are the subtle bodies described in the metaphysical literature plasma life forms?
The new science of astrobiology at NASA appears to be limping along in its understanding of life in the universe probably because it is saddled with the heavy weight of fixations generated from a biology that is largely based on chemistry rather than the whole of physics.
human energies
types of energies
energies and auras
0 notes
netmaddy-blog · 7 years
Text
Extreme Biology - Life at All Scales and Energies
New Post has been published on https://netmaddy.com/extreme-biology-life-at-all-scales-and-energies/
Extreme Biology - Life at All Scales and Energies
A number of fixations plaguing the astrobiology community regarding the pre-requisites for life is retarding the development of biology and the search for new life in the universe. These fixations work as smokescreens to obscure the myriads of other types of life forms that may be thriving even in our Solar System. Astrobiologists, particularly at NASA, appear to have a dogmatic fixation on studying life only at the biochemical level, a pre-occupation with water as a substrate for life, adamant on only studying carbon-based life forms, restricted to a very narrow temperature range and scale; and not even noticing that all the life forms that they have imagined in their wildest models are only based on particles within the (physicists’) Standard Model.
Physics affects biology in a more fundamental way than even chemistry or biochemistry. New developments in physics should open up areas to consider more extreme life forms. If we find dark matter and supersymmetric particles – would biologists then start thinking about dark matter and supersymmetric life forms? Should we be talking about “quantum biology”? When physicists talk of parallel universes, would biologists consider symbiosis between life forms in parallel universes? Is Darwin’s tree of life complete? Where are its roots?
Life at Extremely Small Scales – Nano and Quantum Life
Bacteria may be no larger than 10 microns; viruses no larger than 100 nanometers; molecules about 1 nanometer and atoms about 0.1 nanometers. Does scale impose a barrier to life or even consciousness? If viruses are considered life forms (as some leading astrobiologists argue) then they constitute “nano-life”.
Consciousness may even exist at the quantum scale. “In some strange way an electron or a photon [or any other elementary particle] seems to ‘know’ about changes in the environment and appears to respond accordingly,” says physicist Danah Zohar. A group at the Weizmann Institute in Israel has done a variation of the famous “double-slit” experiment. They used electrons, instead of photons, and observed how the resultant interference pattern (which indicates wave-like properties of the particle) dissipated the longer you watched the electrons go through the slits. As a wave the electron passes through both slits simultaneously but if, according to E Buks, it “senses” that it is being watched, the electron (as a particle) goes through only one path, diminishing the interference pattern. Elementary particles (such as photons and electrons) appear to possess a certain degree of “intelligence” and awareness of the environment. Renowned plasma and particle physicist, David Bohm, says “In some sense, a rudimentary mind-like quality is present even at the level of particle physics. As we go to subtlest levels this mind-like quality becomes stronger and more developed.”
In a new field called “quantum metaphysics”, Jay Alfred has proposed that consciousness is as fundamental a property of elementary particles as properties that make it “matter” or a “physical force” (for example, mass, spin, and charge) (see Conscious Particles, Fields and Waves, 2007). And just as mass, spin, and charge differ from one particle to another; it is probable that different particles have different degrees of consciousness. He has argued (see Jay Alfred, Our Invisible Bodies, 2006) that consciousness can manifest depending on the degree of quantum coherence and the intrinsic properties of the single particle. (This may be cited as the “Quantum Coherence Theory of Consciousness”.)
In studying particle consciousness we must not get distracted by their scale. In fact, (under quantum field theory) particles are excitations in a field that may be infinitely large. Every particle has a corresponding field. If a particle is considered a “unicellular life form” then a field of particles may be considered a “multicellular life form” – except that these “cells” go in and out of existence within the field. This obviously begs the question – Is the biochemical cell the smallest unit of life? If not, then a biological revolution, more important than the Copernican revolution in terms of its impact on society, is around the corner.
Life at Extremely Large Scales
Life at all scales is probable – including at the planetary, stellar and galactic scales; and even the universe and multiverse. The Gaia hypothesis has been proposed by James Lovelock and Lynn Margulis. Jay Alfred has proposed life at cosmic and global scales by using the “plasma metaphysics” model which believes that an extensive web of currents in space and on Earth exists which is both anatomically and physiologically similar to a neural network in the human brain. (See Are We Living in a Gigantic Brain? 2007) This web of currents in space not only looks like a neural network, it functions like one. We should not be surprised to see life being engineered using an electromagnetic substrate. A biochemical cell’s membrane is now thought to function like a semiconductor.
Perhaps a thought experiment could be enlightening. Imagine yourself as a cell within your brain carefully observing your environment with a nano-telescope. Would you consider your brain as being able to support consciousness? What you would see are neural cells alternately firing and resting; chemicals rushing to synapses and the zapping of nasty electrical currents – clearly not a very “habitable zone” for life or consciousness to exist – from your microscopic point of view. But we know better…
Could the plasma universe, with its network of currents, be a living, conscious entity? Was the quark-gluon plasma ball that inflated during the Big Bang a life form?
High Energy Biology – Life at High Energies and Temperatures
At high temperatures, molecules break up into atoms and atoms break up into a soup of sub-atomic particles called plasma. (Partially ionized gasses are also described as “plasma”.) Plasma life forms are likely to be the most common life form in the universe, given that plasma makes up more than 99% of our visible universe which is almost everywhere ionized. This is in stark contrast to complex carbon-based life forms, which according to the Rare Earth hypothesis proposed by Peter Ward and Donald Brownlee, would be rare in the universe due to a number of factors – including the need for an acceptable range of temperatures to survive.
Plasma is an ideal substrate for life at high temperatures. Plasma life forms would adapt to environments which would be considered hostile to carbon-based life forms. It is possible that plasma life forms were already present in the gas and materials that formed the Earth 4.6 billion years ago. Carbon-based biomolecular life forms only appeared 1 billion years later. Tsytovich and other scientists (including Lozneanu and Sanduloviciu, discussed below) have proposed that plasma life forms, in fact, spurred development of organic carbon-based life on Earth.
In 2003 physicists; Erzilia Lozneanu and Mircea Sanduloviciu of Cuza University, Romania, described in their research paper Minimal Cell System created in Laboratory by Self-Organization (published in Chaos, Solitons & Fractals, volume 18, page 335), how they created plasma spheres in the laboratory that can grow, replicate and communicate – fulfilling most of the traditional requirements for biological cells. The physicists “grew” spheres from a few micrometers up to three centimeters in diameter. They are convinced that these plasma spheres offer a radically new explanation of how life began and proposed that they were precursors to biological evolution. Lozneanu plasma spheres can reproduce by replicating, just like bacteria which are generally considered “immortal” and do not undergo “apoptosis” or programmed cell death.
It is still a mystery in mainstream biology as to how DNA originated. An international scientific team has discovered that in the gravity-free environment of space, particles in plasma will beat together to form string-like filaments which will then twist into helical strands resembling DNA that are electrically charged and are attracted to each other. Using a computer model of molecular dynamics, V N Tsytovich and his colleagues of the Russian Academy of Science showed (in their paper entitled From Plasma Crystals and Helical Structures towards Inorganic Living Matter, published in the New Journal of Physics in August 2007) that particles in plasma can undergo self-organization as electric charges become separated and the plasma becomes polarized. “These complex, self-organized plasma structures exhibit all the necessary properties to qualify them as candidates for inorganic living matter”, says Tsytovich, “they are autonomous, they reproduce and they evolve”.
Past studies, subject to Earth’s gravity, have shown that if enough particles are injected into a low-temperature plasma, they will spontaneously organize into crystal-like structures or “plasma crystals”. Jay Alfred has characterized “subtle bodies” as plasma crystals in his 2006 book Our Invisible Bodies. He has written extensively about the anatomy and physiology of these bioplasma bodies generating a new field of research called “plasma metaphysics”.
According to plasma metaphysics (see Jay Alfred, Our Invisible Bodies, 2006), plasma is subject to self-organization through both thermodynamics and electrodynamics. Plasma life forms have various mechanisms for the absorption and distribution of energy – in other words, a metabolic system. These include both vortexes (equivalent to orifices in common biological systems) and filamentary currents (equivalent to tubes and circulatory systems in common biological systems) which are structured by magnetic fields and driven by electric fields. Information is stored in the nucleus of the bioplasma body as compressed waveforms (using Fourier transforms) and used for replication. Plasma life forms are also enclosed in a membrane (like the membrane of a biological cell) and selectively admit charged particles (just like the semi-permeable membranes of common biological systems that admit ions i.e. charged particles into the cell). These structures (vortexes, filaments, membranes and the nucleus) have been described in the metaphysical and even religious literature more than 2,000 years old in connection with what is commonly referred to as “subtle bodies”. With a membrane that separates the body from the environment, metabolic and information systems, these subtle bodies are, in fact, plasma life forms.
Dark Matter Life Forms
According to plasma metaphysics (see Jay Alfred, Our Invisible Bodies, 2006), dark matter consists largely of a magnetic plasma of largely non-standard particles or “dark plasma”. Despite the many experiments to concoct life out of chemicals, there has yet been no sign of life as complex as the simplest biological cell. One of the main unanswered questions remains as to how DNA, with its double helix structure, was formed. Computer simulations by Tsytovich have confirmed that helical strands are generated in the (complex) plasma that looks and function like DNA. At a more fundamental level, it is well known that double helical and corkscrew structures are signature features of plasma dynamics. Could the missing ingredients that gave rise to life include certain components which are now included under dark matter? Jay Alfred has proposed the “Dark Panspermia” hypothesis (see Plasma Life Forms – Dark Panspermia, 2007) which proposes that dark matter was carried by comets, meteorites, and asteroids as they traversed the dark matter-filled space around the solar neighborhood. As they impacted the Earth, dark plasma cells acted as templates for the formation of biochemical cells. Both dark matter and ordinary life forms co-evolved over vast stretches of time.
Perhaps a bacterial cell in solution should be “diluted” (similar to procedures often encountered in homeopathy) – by very slowly and meticulously taking apart each component of the bacteria. A healthy human cell should then be introduced into the solution to see if it would undergo reactions that would be similar to reactions caused by the same type of bacteria composed of visible ordinary matter. If it does (as would be expected and claimed by homeopathic theory) it will betray the presence of the dark matter counterpart of the visible bacteria.
Inter-Substrate (Plasma-Carbon) Symbiogenesis
Biologists are beginning to realize that cooperation was just as important as competition in the evolution of life’s diversity and resilience. Every cell in the human body contains a mitochondrion which is thought to be a bacterial cell which invaded an early eukaryote. Instead of being digested, both cells tolerated each other and began to live with each other – a merger which provided synergies to both. This is a startling example of symbiogenesis. But then every multi-cellular animal or plant is also an obvious example of co-operation rather than competition. More than a 1,000 trillion cells are living peacefully and co-operating in your body; together with 500 to 100,000 species of bacteria. In fact, there are about ten times as many bacteria as human cells in the human body. Does symbiosis extend further?
There is anecdotal evidence that plasma life forms formed symbiotic relationships with the abundant carbon-based life forms on Earth – particularly with hominids. Unlike other known species of animals, the unique brains of hominids allowed them to activate the higher energy bioplasma bodies that co-evolved with the physical-biochemical body without necessarily having any conscious awareness that they were accessing a different cognitive system. Relationships developed between the lower energy carbon-based bodies and the higher energy bioplasma bodies which were sustained, perhaps, for several millions of years up to the present. This allowed the higher energy bioplasma bodies to evolve in a unique way on Earth.
Conclusion
Do we need to expand the definition of life? When and how does a life form become conscious of itself? Is consciousness a fundamental attribute of physical matter like spin, mass, and charge which physicists themselves do not quite understand? Is the cell (as defined in mainstream biology) the smallest unit of life? Are the subtle bodies described in the metaphysical literature plasma life forms?
The new science of astrobiology at NASA appears to be limping along in its understanding of life in the universe probably because it is saddled with the heavy weight of fixations generated from a biology that is largely based on chemistry rather than the whole of physics.
0 notes
sciencebulletin · 4 years
Text
New high-energy-density physics research provides insights about the universe
Atoms and molecules behave very differently at extreme temperatures and pressures. Although such extreme matter doesn't exist naturally on the earth, it exists in abundance in the universe, especially in the deep interiors of planets and stars. Understanding how atoms react under high-pressure conditions—a field known as high-energy-density physics (HEDP)—gives scientists valuable insights into the fields of planetary science, astrophysics, fusion energy, and national security. One important question in the field of HED science is how matter under high-pressure conditions might emit or absorb radiation in ways that are different from our traditional understanding. In a paper published in Nature Communications, Suxing Hu, a distinguished scientist and group leader of the HEDP Theory Group at the University of Rochester Laboratory for Laser Energetics (LLE), together with colleagues from the LLE and France, has applied physics theory and calculations to predict the presence of two new phenomena—interspecies radiative transition (IRT) and the breakdown of dipole selection rule—in the transport of radiation in atoms and molecules under HEDP conditions. The research enhances an understanding of HEDP and could lead to more information about how stars and other astrophysical objects evolve in the universe. What Is Interspecies Radiative Transition (Irt)? Radiative transition is a physics process happening inside atoms and molecules, in which their electron or electrons can "jump" from different energy levels by either radiating/emitting or absorbing a photon. Scientists find that, for matter in our everyday life, such radiative transitions mostly happen within each individual atom or molecule; the electron does its jumping between energy levels belonging to the single atom or molecule, and the jumping does not typically occur between different atoms and molecules. However, Hu and his colleagues predict that when atoms and molecules are placed under HED conditions, and are squeezed so tightly that they become very close to each other, radiative transitions can involve neighboring atoms and molecules. "Namely, the electrons can now jump from one atom's energy levels to those of other neighboring atoms," Hu says. What Is The Dipole Selection Rule? Electrons inside an atom have specific symmetries. For example, "s-wave electrons" are always spherically symmetric, meaning they look like a ball, with the nucleus located in the atomic center; "p-wave electrons," on the other hand, look like dumbbells. D-waves and other electron states have more complicated shapes. Radiative transitions will mostly occur when the electron jumping follows the so-called dipole selection rule, in which the jumping electron changes its shape from s-wave to p-wave, from p-wave to d-wave, etc. Under normal, non-extreme conditions, Hu says, "one hardly sees electrons jumping among the same shapes, from s-wave to s-wave and from p-wave to p-wave, by emitting or absorbing photons." However, as Hu and his colleagues found, when materials are squeezed so tightly into the exotic HED state, the dipole selection rule is often broken down. "Under such extreme conditions found in the center of stars and classes of laboratory fusion experiments, non-dipole X-ray emissions and absorptions can occur, which was never imagined before," Hu says. Using Supercomputers To Study Hedp The researchers used supercomputers at both the University of Rochester's Center for Integrated Research Computing (CIRC) and at the LLE to conduct their calculations. "Thanks to the tremendous advances in high-energy laser and pulsed-power technologies, 'bringing stars to the Earth' has become reality for the past decade or two," Hu says. Hu and his colleagues performed their research using the density-functional theory (DFT) calculation, which offers a quantum mechanical description of the bonds between atoms and molecules in complex systems. The DFT method was first described in the 1960s, and was the subject of the 1998 Nobel Prize in Chemistry. DFT calculations have been continually improved since. One such improvement to enable DFT calculations to involve core electrons was made by Valentin Karasev, a scientist at the LLE and a co-author of the paper. The results indicate there are new emission/absorption lines appearing in the X-ray spectra of these extreme matter systems, which are from the previously-unknown channels of IRT and the breakdown of dipole selection rule. Hu and Philip Nilson, a senior scientist at the LLE and co-author of the paper, are currently planning future experiments that will involve testing these new theoretical predictions at the OMEGA laser facility at the LLE. The facility lets users create exotic HED conditions in nanosecond timescales, allowing scientists to probe the unique behaviors of matters at extreme conditions. "If proved to be true by experiments, these new discoveries will profoundly change how radiation transport is currently treated in exotic HED materials," Hu says. "These DFT-predicted new emission and absorption channels have never been considered so far in textbooks." Provided by University of Rochester More information: S. X. Hu et al. Interspecies radiative transition in warm and superdense plasma mixtures. Nature Communications (2020). DOI: 10.1038/s41467-020-15916-3 Image Credit: CC0 Public Domain Read the full article
0 notes