Visit Blog
Explore Tumblr blogs with no restrictions, modern design and the best experience.
Fun Fact
Furby, that creepy 1990's doll, has a tumblr page.
#geometry
aycucuy · an hour ago
Text
Oh this little guy is crazy
Tumblr media
0 notes
aycucuy · 3 hours ago
Text
I’ve been wanting a death, geometric, and a subtle something else tattoo. This incorporates the latter two and another something else. Think this or a variation will be my next tattoo.
It’s pretty trippy
Tumblr media
0 notes
jordanmerlino · 3 hours ago
Text
Tumblr media
Tumblr media
Tumblr media
Day 110, Taurus Season.
Happy birthday Taurus! Y’all are INCREDIBLE. Your beauty, patience, and sense of humor is captivating. You feel everything with your senses fully. When you eat or drink something, you indulge completely in the tastes and how the ingredients were put together. You truly make the world a better and vibrant place. Keep doing you Taurus!
3 notes · View notes
philipstng · 4 hours ago
Text
{則  那  譜   論  説  :  咱   們  能   找   到  包   含  配
(1  .4  )  Deltaf_ i  = 負lambda_ i  ·f_ i
0  < lambda_ 1  <=     lambda_ 2  <= … 
H  之   壹   組  可   數   規   範   正   交   基  。
該   個  極   小   化  極   大   原   理  斷   言  :
(1  .5  )lambda_ 1  = 下確界{(積分_ M | Nablaf  |^2  )(積分_ M f^2  )^負1 : f  € H  }  (,  )
lambda_ i  = 下確界{(積分_ M |               Nablaf  |^2  )(積分_ M f^2  )^負1 : f  € H 
就  j  = 1  , …  , i  減 1  積分_ M ff_ j  = 0  }  .
拉 普 拉 斯   算   子  的   諸本   徵   值  之   這  表   徵  已  為  去  估   計       諸本   徵   值  之 基   本   工   具  。 此  對  首   幾   個本   徵   值  是  特   别   有   效  的  }這  也  為  眾  所週   知  的  {見  [ JeffCHEEGER  :  就  拉 普 拉 斯   算   子  的   最   小   本   徵                                         值  之   壹  下                         界  於  《 分   析   中  的   問   題  》  普 林 斯 頓   大   學   出   版   社  ('7 0年  )  頁19 5  至  9  ]  }  :  lambda_ 1  是  密   切   關   繫   於  等   週   不   等   式   內  的   某   些  常   數  。 設 
(1  .6  )  h_ 狄 (M  )  = 下確界{體積(deeOmega  )  / 體積(Omega  )  :  Omega  是  M  的   壹  緊   子   區   域  } 
(1  .7  )  h_ 紐 (M  )  = 下確界{體積(H  )  / 最小值[體積(M_ 1  )  ,  體積(M_ 2  )  ]  }  :      H  為  分   解  M   成  M_ 1  與    M_ 2  之   M  的   壹   個  超   曲   面  }  。
則  以  研   究  首                本   徵   函   數  之   水   平   集   合[ CHEEGER  : 拉 普 拉 斯   算   子  跟  對  非  -   負   曲   率  的   流   形  之   直   徑 之   間  的  關   係  數   學   成   就期刋  卷拾  玖  ('6 8年  )  頁5 5 8  至  6 0  ]  ,  人們  能   證   明  :  對  狄 利 克 雷   問   題  之   首   個   本   徵                值
(1  .8  )lambda_ 1  >= 1  / 4  ·[h_ 狄 (M  )  ]^2
而  就  NEUMANN   問   題之   首   本   徵   值
(1  .9  )lambda_ 1  >= 1  / 4  ·[h_ 紐 (M  )  ]^2  .
在  此  顯   式   形   式   倆條式(1.  8  )  和  (1.  9  )  歸   因 CHEEGER  [ :  拉普拉斯算子跟                對 非- 負 曲率的 流形之 直徑                        之間     的 關係    ]  。  這   類  之   壹   條   公   式  就  作   用   於  微   分   形   式  的 拉 普 拉 斯   算   子  仍  欠   奉*  ,  此   般   壹   條                      公   式  會  給  壹   個  黎 曼   流  形   上   非   線   性   橢   圓   系   統  之   壹  較   佳   理   解  。
倆條不   等   式  (1.  8  )  和  (1.  9  )  於  [ 丘  :  等   週   不   等   式  及  壹   個                         緊   黎 曼   流   形  的   首  本   徵                      值  巴 黎   高   等   師   範   學   院   科   學   年   鑒  卷捌  ('7 5年  )  頁48 7  至  50 7  ]   被  用   由  基斯道化·B.CROKE   先   生  的   某   些  較  精   確   之   幾 何   數   據寫   去  給lambda_ 1  之   壹下界   估  計  (。   )  [                                                                      CROKE : 某   些  等   週   不   等   式  與  ( 本   徵   值   估   計 )                                                      巴 黎   高   等   師   範   學   院   科   學   年   鑒  第 肆輯卷拾  叁(肆期8 0年頁4 1 9至 3 5  )  ]  以  運   用  BERGER  及  JerryKAZDAN  [ A.BESSE  :  流   形  全   部   其   等   的   測   地   線  是  閉  的  斯 普 林 格'7 8年  ]  之   壹   個  想   法(比較定理  )   能   進  壹   步   推   進[ 丘  :  同上  ]  ,  他  能   以  如 [ 丘  :  同上   ]   內   相   同   之   幾 何   數   據   對  壹  緊   黎 曼   流  形   去  估   計  索 伯 列 夫常   數  。
索 伯 列 夫   不   等      式  等   價   於  等   週   不   等   式  。 實   際  若  Omega  是  M   上   壹   個  緊   子   區   域  且  如  咱   們  選   擇  在  式(1.  2  ){c'·{ 積分_ M f^[n/(n減1  )  ]  }^[(n減1  )/n  ]   <=      
 =     積分_ M |Nablaf  |  }  的   f   成  逼   近  Omega  之   特   徵   函   數  的   壹  函   數  ,  則  取  極   限   咱   們  獲                            
*譯註('2 1年  )  西蒙·RAULOT,AlessandroSAVO('1 0年叁月叁日  )壹條 RElLLY(-型  )公式與就 微分
形式之 本徵 值 估計  arXiv:100 3  .081 7(數學  )/幾何分析期刋卷廿貳第 叁期('1 1年  )頁6 2 0至 4 0  .
0 notes
dddribbble · 6 hours ago
Photo
Tumblr media
3D Geometric Digital Art render shape elements 3d modeling nftart nft illustration abstract agrib spheres blender3d blender 3d circles circular geometric illustration geometry geometrical shapes abstract art geometrical geometric
12 notes · View notes
vjloops · 9 hours ago
Video
Retro Lands - VJ Loops Pack As we enter these Retro Lands we can't help but feeling out of this world. Dark but at the same time glowing and mysterious, these landscapes unveil some fascinating environments. 👁 Visuals by BitCrush 🛒 Available at vjloops.com 🔎 File ID: 149350 #animation #3D #vj #loops #visuals #backgrounds #landscape #retro #CGI #VFX #space #scifi #geometry #lowpoly #dark #neon #ネオン #lights #glow #video #80s #motiongraphics #abstract #Livestream https://www.instagram.com/p/CN3PwUBn29K/?igshid=9kc5qkit2x1z
1 note · View note
willowcroftdreaming · 10 hours ago
Text
Monday's Math Madness!
Monday's Math Madness! #Math #history #maritime #Italy #Venice @willowcroft16 @findthefactors
Wait, what? Yes, I know, I NEVER talk about math! Don’t look at me, it was Iva Sallay at Find the Factors‘ suggestion! (https://findthefactors.com/). An invite, actually, to write a math-themed blog that Iva Sallay could possibly include in her “Playful Math Education Blog Carnival” that Sallay is hosting! And one that I was thrilled to even be considered for! I’ve followed Iva Sallay for so long…
View On WordPress
0 notes
xponentialdesign · 12 hours ago
Text
Tumblr media
Birth of a Cube out of Empty Space Illusion ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ SUBSCRIBE TO MY YOUTUBE CHANNEL ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
12 notes · View notes
etchfo · 15 hours ago
Text
Tumblr media
hand-constructed object drawing, 2015
2 notes · View notes
ecopress · 8 days ago
Text
Make Sustainability Sexy//Wolven
Sustainability — Diversity — Body Positivity — Creativity/Artistic Appreciation
Wolven is an an activewear brand that with every purchase they give back to the plant. Designed in Downtown Los Angeles with sustainable fabrics, each style is produced in small batches.
The clothes are made from recycled plastic bottles and the patterns come from geometry found in nature.
OEKO TEX- certified recycled P.E.T fabric and there are 27 post-consumer plastic bottles in one pair of leggings.
(source; https://wolventhreads.com/pages/sustainability)
Tumblr media
(source; https://wolventhreads.com/pages/sustainability)
The softest sustainable leggins you'll ever own.
A cellulose fiber derived from beechwood pulp that’s twice as soft as cotton (really, really soft). Our modal fabrics are produced from wood-pulp fibers that are sustainably harvested
Beech trees propagate and regenerate naturally, so no artificial irrigation or planting is required—making beechwood forests a completely natural and more sustainable source of raw material. These carbon-neutral fibers require no toxic pesticides, no clear-cut farm land to grow, and substantially less water than cotton. Win-win.
Tumblr media
A.
0 notes
thecrochetcrowd · 16 hours ago
Text
Crochet Study of Geometry Stitch Along
Crochet Study of Geometry Stitch Along
The Crochet Crowd Study of Geometry The Crochet Study of Geometry is the next study blanket in my (Mikey’s) designs. Scheduled for Summer 2021. This blanket design is considered an easy level and is 60″ x 60″. Design Considerations Keeping in line with the concepts that my blanket designs are texture-rich. This design was the 3rd attempt of 3 designs that were written to hit the goals for the…
Tumblr media
View On WordPress
0 notes
jesterjamz · 17 hours ago
i understand your thought process for the equation and technical speaking both answers are right but
6÷2(1+2)
6÷2×3
3×3
9
anyway i do agree with you that 1 is the right answer but 9 is also the right answer!
so anon what you’re trying to tell me is that both 1 & 9 are the correct answer. right?
1 note · View note